About Michael Paluszek

Michael Paluszek is President of Princeton Satellite Systems. He graduated from MIT with a degree in electrical engineering in 1976 and followed that with an Engineer's degree in Aeronautics and Astronautics from MIT in 1979. He worked at MIT for a year as a research engineer then worked at Draper Laboratory for 6 years on GN&C for human space missions. He worked at GE Astro Space from 1986 to 1992 on a variety of satellite projects including GPS IIR, Inmarsat 3 and Mars Observer. In 1992 he founded Princeton Satellite Systems.

Realizing 2001: A Space Odyssey

I grew up during the Apollo era but what really inspired me to get involved in the space business was Stanley Kubrick’s movie 2001: A Space Odyssey. My dad took me and my brother to see it at the Cinerama theater in New York City the year it was released. It was a mind-blowing experience. When I went to MIT, my intent was to go into aerospace engineering but the collapse of the aerospace industry after the cancellation of Apollo and the ending of the Vietnam war motivated me to switch to electrical engineering, which is Course VI at MIT. There I would begin my exploration of the technologies that were found in 2001.

The first exposure was Professor Patrick Winston’s course 6.034 or “Artificial Intelligence.” Researchers at MIT were working to make HAL 9000 a reality. The course covered topics such as “Blocks World,” an AI system that could reason in the context of a world consisting of nothing but a pile of blocks. We learned Lisp, an early AI language. I did my research project on AI chess, an appropriate topic as I had written an end-game chess program in high school and HAL defeats Frank Poole in chess onboard the Discovery.

You can find images from the movie on IMDB.

After getting my SB (bachelors degree at MIT) I went to graduate school in Aernoautics and Astronautics, Course XVI, at MIT. My first spacecraft experience was working with Professor John McCarthy to design a small space station that could be lifted in one Space Shuttle launch. Professor McCarthy was a manager on the Apollo program before the Apollo I fire. He had a phenomenal amount of practical experience,

While I was at MIT fellow graduate student Dave Akin was working on space suits and astronaut in space work. MIT pioneered that idea that astronauts could do construction in space, something seen in the Discovery scenes in the movie.

After getting my Engineer of Aeronautics and Astronautics, I spent a year working on thrusters at MIT before going to the Draper Laboratory where I worked on the Space Shuttle. I learned the Shuttle programming language, HAL/S. It was named after Hal Laning. At least that is the official story. The Space Shuttle was NASA’s first approximation of the Orion Space Clipper. I also worked on several early NASA space station designs including Space Station Freedom. I looked into a space design design with rotating crew quarters though not a big wheel like Space Station V.

I then moved to New Jersey to work at GE Astro Space. I was there for 6 years where I worked on GPS IIR, Inmarsat 3 and several other spacecraft. That is where I gained experience of a wide variety of autonomous spacecraft.

I started Princeton Satellite Systems in 1992. We’ve worked on many different projects and are currently pursuing just about every element in the movie 2001: A Space Odyssey.

Our biggest project at the moment is Direct Fusion Drive, a nuclear fusion propulsion system. These are equivalent to the engines on the Discovery. We are teaming with Sam Cohen at the Princeton Plasma Physics Laboratory on this technology and have a ARPA-E grant to demonstrate ion heating, a necessary first step on the path to a fusion engine. Discovery I’s engines were Cavradyne engines – gaseous core nuclear thermal engines. Many years later NASA recreated Discovery I using hypothetical fusion engines.

Under IR&D we are developing Space Rapid Transit (SRT), a two stage to orbit launch vehicle that takes off and lands horizontally. As it happens, the Orion spacecraft was two stage to orbit with a boost from an electromagnetic launcher. SRT has an air-breathing first stage and an LH2/LO2 propelled second stage. Orion used nuclear thermal engines for both stages – something that would not be popular today. The picture below was generated by a 2001 fan based on Arthur C. Clarke’s novel. SRT is right below it.

We also did a conceptual design of a reusable lunar lander with a nuclear thermal engine for shuttling to and from lunar orbit. It would use hydrogen from lunar water. It has a Lockheed Martin Orion spacecraft on top. The entire vehicle is one piece. This is much like the Aries 1B in 2001.

We are also advancing AI technology with or work on deep learning. We have a new book coming out on the subject. We’ve also written and flown autonomous control systems for three different missions. The software can’t play chess, but does function without humans in the loop, something that HAL would have liked!

Updates for the 2019 Aircraft Control Toolbox

We’ve added some new tools to the Aircraft Control Toolbox for our upcoming 2019 release. The first is a new GUI for creating aircraft models. You import a Wavefront OBJ files and then you point and click to define leading edges, wing areas, engine locations and so forth. This makes it easier to import the geometric data. The GUI is shown below. It illuminates the view that you need to use for a given geometric element in red. The inertia matrix is generated from the mass and the surface geometry.

The new Model Creation GUI

A new simulation function was added to use the data from this GUI. It has a flat Earth aircraft model with a plugins architecture. You can add your own lift, drag and thrust models or use the simple built-in models. It is much simpler than AC.m which is designed to be a comprehensive high-fidelity simulation. We’ve added a new animation GUI to show you the results of your simulations.

We expect 2019.1 to be available in June. You can get a demo with previews of the new functions now.

Direct Fusion Drive in the News

Here are some links to recent articles on Direct Fusion Drive. From the Federal Laboratory Consortium:

https://www.federallabs.org/successes/success-stories/princeton-plasma-physics-laboratory-licenses-fusion-technology-that-could

From Next Big Future

From the Princeton Plasma Physics Laboratory website

https://www.pppl.gov/news/press-releases/2019/03/pppl-physicist-receives-funding-research-improvements-unique-fusion

From Aerospace Testing International

Super Technologies at ICSS

Laxmi Prakash of Super Technologies, our distributor in India, attended the International Conference on Small Satellites in Hyperbad India on February 8, 2019

https://www.thehansindia.com/posts/index/Telangana/2019-02-08/International-Conference-on-Small-Satellites-and-Systems/490540

Here he is at his booth. Super Technologies represents several high technology aerospace companies.

ARPA-E Award for Compact Nuclear Fusion Power

Princeton Fusion Systems, a fully owned subsidiary of Princeton Satellite Systems, has been awarded $1.25 Million from ARPA-E for Low-Radioactivity Compact Fusion Devices

Today ARPA-E announced announced that PFS has received a competitive $1.25 million award from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E), as part of the Energy cohort of OPEN 2018.

Princeton Fusion Systems seeks to develop technologies to enable future commercial fusion power. Our team’s concept is a small, clean, and portable design based on a field-reversed-configuration plasma. The concept uses an innovative method called odd-parity rotating magnetic field (RMF) to drive electrical current and heat the plasma to fusion temperatures. Under this award, the team will pursue improved electron and ion temperatures through RMF, as well as identify the modeling needed to elucidate the key heating and loss mechanisms for the fusion reactor concept. The team’s ultimate power plant design seeks a very small footprint for a compact, potentially transportable, distributed energy resource that is fully dispatchable and emissions-free.
PFS received this competitive award from ARPA-E’s OPEN 2018 program, in which teams develop innovative technologies to transform the nation’s energy system. OPEN solicitations are an open call to scientists and engineers for technologies across the entire scope of ARPA-E’s energy mission.

This work complements three NASA grants for the development of this technology for nuclear fusion rockets for human and robotic space exploration. This includes the NASA Phase II NIAC Grant, “Fusion-Enabled Pluto Orbiter and Lander,” and a NASA Phase II STTR, “Superconducting Coils for Small Nuclear Fusion Rocket Engines“, and a Phase I STTR, “High Efficiency RF Heating for Small Nuclear Fusion Rocket Engines.”. These contracts build on over 20 years of collaborative work between Princeton Fusion Systems and the Princeton University Princeton Plasma Physics Laboratory. This unique nuclear fusion concept was invented by Dr. Samuel Cohen of the Princeton Plasma Physics Laboratory.

Princeton Satellite Systems was founded by Mr. Michael Paluszek in 1992 to develop advanced space and terrestrial technology. It has developed a wide range of space and terrestrial technology including advanced spacecraft control and navigation systems, formation flying systems and terrestrial energy systems including solar, wind and nuclear fusion.

Princeton University Science and Technology Job Fair 2018

Princeton Satellite Systems had a table at the Princeton University Science and Technology Job Fair on Friday, October 12. Many companies attended including the IBM Thomas J. Watson Laboratory, Facebook and Siemens.

We had on display hardware and software that involved the work of interns at PSS. The exhibits were of great interest to the many students who came by our table.

From left to right is an iPhone App for talking with a reconnaissance satellite, a lunar landing simulation on the LCD monitor, parts of an optical navigation system, a Class E RF amplifier, a reaction wheel and a frame for a small satellite. Many students who came by were very knowledgeable about our work.

Here I am talking with one of the students.

It was great event! We look forward to talking with the students when we interview for summer and full time jobs in January.

Young Women’s Conference in STEM

Princeton Satellite Systems attended the Young Women’s Conference in STEM in at the Frick Laboratory on the Princeton University campus again this year. We had an exhibit with spacecraft hardware and software. This include 3D printed models of our fusion reactor core and a 2 stage to orbit launch vehicle, star and navigation cameras, a circuit board for driving a fusion reactor and a 3U CubeSat frame . We were also running a simulation of a Lunar Landing simulation.

We met many enthusiastic students this year! It seemed that there were more high school students than in past years. A budding plasma physicist asked how we fuel the Direct Fusion Drive engine. Another student, looking at our Lunar Lander simulation display, asked what is a quaternion! The disassembled reaction wheel was very popular.  Some students wanted a detailed explanation about how the motor worked. One student wanted to know the electrical details of our RF board. Several were interested in our Army iPhone app. One wanted to know if she could get it from the App Store.

Other attendees included Lockheed Martin, the FBI and the Princeton Plasma Physics Laboratory. Click on this image to see a video about the event.

It was a fun event, albeit exhausting given the four hours of continuous conversations. We do hope that we inspired some of the attendees to pursue careers in science, math and engineering!

Inter Ivy Space Coalition Meeting

Marilyn and I attended the first Inter Ivy Space Coalition Inter Ivy Space Coalition meeting at Yale University on April 6 and 7.

The meeting was attended by students with an interest in space from the Ivy League schools. Saturday consisted of talks by speakers from a wide range of organizations followed by an exhibition and a banquet. Jonathan Li of Yale was the driving force behind this excellent conference.

The Dean of Engineering of Yale opened the meeting talking about the Yale Undergraduate Aerospace Association. They have done a wide variety of space work including some very large rockets. One student later showed me the nozzle for their latest rocket.

Dr. Fuk Li of JPL, Director Mars Exploration Directorate, talked about Mars 2020. The mission with its very sophisticated rover, will look for indigenous life, study climate and geology and prepare for Exploration. One ambitious goal is to eventually return Mars samples. The challenge of the sample return is to not contaminate the Earth as in the movie The Andromeda Strain.

Prof. Alessandro Gomez of Yale gave a nice talk on electrospray thrusters. The thrusters will be very valuable for small satellite missions.

Suresh Kannan talked about Trustable Autonomous Aerospace Systems. He had great videos from Nvidia on autonomous car control systems and videos from Boston Dynamics showing their amazing robots.

Ellen Chang, co-founder of  Lightspeed Innovations is a former U.S. Navy Intelligence Officer and a graduate of the Naval Postgraduate School. She talked about the state of investment in space. She mentioned a couple of investments organizations, including IQT, which was started by the CIA! She said a key issue for space companies is that investors can’t wait 20 years for their return on investment.

I gave the next lecture presenting the latest results on our work on Direct Fusion Drive.

Artist rendering of DFD rocket engine

We’ve been able to reduce the mass of our RF and superconducting coil subsystems dramatically. We have completed the radiation heat transfer analysis of the reactor which shows that it isn’t a big problem. Conduction will provide the major heat loads.

Here is a recent shot in our experimental facility.

I included a  teaser slide on our two stage to orbit vehicle that we are proposing to NASA and DARPA. It would be inexpensive enough for companies and universities to own their own launch vehicle. It is fully reusable and could be launched at any convenient airport. It can also shuttle around the world at subsonic speeds. It is about the size of a private jet.

Alden Richards, founder of Space Machine Advisors, gave a fun talk on the space business. He insured the PanAmSat launch on which I worked. He said that the key for space profitability is dual use,

Jason Aspiotis of Finsophy talked about sources of funding for space. These include global sovereign funds that countries like Kuwait and Norway maintain. He  is a founder of  SpaceVault online banking and SpaceXchange.

Dr. Jonathan Arenberg of  Northrop-Grumman talked about the Chandra X-Ray telescope. He also talked about future missions for imaging exo-planets. Dr. Arenberg is second from the left on the linked page.

Ulisses Ortiz of  Space for Humanity talked about his plan to make sub-orbital flights available to anyone. People selected would make a commitment to using the publicity for a good cause.

Kari Love of  Soft Robotics gave a great talk on how to win contracts. She said you need to get to know people by going to conferences and responding to RFIs. She said you can make contacts by going to non-space events, like science fiction conventions. She recommended using professional illustrators for key graphics. Kari has a interesting background. She designed the Spiderman costume for the Broadway musical!

Dr. Lin Chambers Atmospheric Scientist at NASA/LaRC, gave the final talk of the day. Unfortunately, we were setting up our table for the networking fair so we missed her talk!

Princeton Satellite Systems had a table at the networking fair. The TV is showing a lunar landing simulation. We had a disassembled reaction wheel, a sun sensor, a navigation camera and a 3D printed model of our two stage to launch vehicle, Space Rapid Transit Mini.

We talked with many students. All of our discussions were interesting. I talked at length with an English major interested in space!

Scott Willoughby of Northrop-Grumman and Program Manager of the James Webb Space Telescope  gave an overview of the program in the after dinner talk.

Here are the speakers and student organizers.

We look forward to next year’s meeting!