About Michael Paluszek

Michael Paluszek is President of Princeton Satellite Systems. He graduated from MIT with a degree in electrical engineering in 1976 and followed that with an Engineer's degree in Aeronautics and Astronautics from MIT in 1979. He worked at MIT for a year as a research engineer then worked at Draper Laboratory for 6 years on GN&C for human space missions. He worked at GE Astro Space from 1986 to 1992 on a variety of satellite projects including GPS IIR, Inmarsat 3 and Mars Observer. In 1992 he founded Princeton Satellite Systems.

Rutgers Engineering Honors Council Keynote Speaker Event

Mike Paluszek gave a talk on the Pluto Orbiter mission to the Rutgers Engineering Honors Council Keynote Speaker Event on March 22, 2016. The talk covered the mission and spacecraft and outlined the design process. Mike also discussed engineering careers and how to make the most of one’s own career.

From a member of the audience, “Just wanted to thank you once more for the wonderful talk you gave last Tuesday evening!”

This is a photo of the group.
IMG_20160325_110148_02

A photo of Mike with the officers.

IMG_20160325_110148_04

Lunar Orbit Insertion Maneuver

New functions in the Lunar Cube module in 2016.1 allow you to easily plan lunar insertion and orbit change maneuvers. In the following pictures you can see a lunar orbit insertion from a hyperbolic orbit. In all figures the lunar terrain is exaggerated by a factor of 10.

LunarMnvr2

The same maneuver looking down on the orbit plane. The green arrows are the force vectors.

LunarMnvr1

The following figure shows a two maneuver sequence. The first puts the spacecraft into an elliptical orbit. The second circularizes the orbit.

Lunar3

Lunar Cube Module for 2016.1

We are adding the Lunar Cube Module in 2016.1 to our CubeSat Toolbox for MATLAB! It allows users to analyze and simulateCubeSats in lunar transfer and lunar orbit. It includes a new dynamical model for CubeSats that includes:

  • Earth, Moon and Sun gravity based on the JPL ephemerides
  • Spherical harmonic lunar gravity model
  • Reaction wheels
  • Thrusters
  • Power generation from solar panels
  • Battery energy storage
  • Variable mass due to fuel consumption
  • Solar pressure disturbances
  • Lunar topographic model
  • New graphics functions for lunar orbit operations
  • Lunar targeting function
  • Lunar mission control function for attitude control and orbit control

The module includes a script with a simulation of a 6U Cubesat leaving Earth orbit and reaching the moon. The following figure shows the Earth to Moon trajectory.

LunarTrajectory

This figure shows the transfer orbit near the moon. The lunar topography is exaggerated by a factor of 10 to make it visible. It is based on Clementine measurements.

LunarEncounter

Here are results from the new LunarTargeting function. It finds optimal transfers to lunar orbits. The first shows the transfer path to the Moon’s sphere of influence.

Test21

The next shows the lunar hyperbolic orbit. In this case the transfer is into a high inclination lunar orbit.

Test22

Contact us for more information!

Stofiel Aerospace and Princeton Satellite Systems at CES

Stofiel Aerospace LLC had a display at the Consumer Electronics Show. They invited Princeton Satellite Systems to display its products on their table. The booth is shown in the following picture. You can see Stofiel’s rockets.

IMG_0587

Here is a closeup showing our 3U CubeSat with a camera mounted in one of the bays.

IMG_0588
Members of the Stofiel team:

IMG_0663

More members of the Stofiel team:

IMG_0697

Stofiel Aerospace LLC is an aerospace solutions company created by five U.S. military veterans from Cleveland, Ohio. Stofiel Aerospace LLC is currently developing a portable micro/nano-satellite launch system. Their revolutionary system drastically reduces the wait time for small payloads to reach low Earth orbit to days, not years. By utilizing solid rocket motors and Hydrogen-filled balloons, their system finally offers CubeSat manufacturers and clients the opportunity to be considered a “primary payload” for orbital missions. Currently, they are partnered with the Ohio Aerospace Institute in Cleveland, Ohio and working for further funding to continue development of this industry-changing technology. For inquiries, please contact Jason Beeman, CFO at (440) 994-9035.

SunStation in October

The following image shows SunStation in operation on a bright October day! The load for the day was 12.4 kWh. This includes charging a Nissan Leaf and a Toyota Prius Plugin-in. The total power generated was 40.3 kWh and 21.4 kWh was sold to the grid. As you can see, the installation is much more than carbon neutral with regard to electrical power. It has a gas heating system so is not completely carbon neutral.

OPTICSRE

The orange line is the state of charge for the batteries. The 14.4 kWh of batteries is enough to keep the home running, charge the Prius fully and the Leaf partially, when the grid is down. The system automatically disconnects itself from the grid when there is an outage.

The house itself is fairly energy efficient with mostly LED lights and a few CFLs. The heating system is high efficiency with a 60 W fan that operates most of the time. The house is air-tight and has a whole house air exchange system that operates continuously. The refrigerator is 10 years old and the washer and dryer are less than 10 years old. As you can see, the typical load is 500 W except when the cars are charging. The efficiency could be further improved by installing a state-of-the-art central air system and replacing the refrigerator.

The Nissan Leaf is 100% electric. On a normal day the Prius operates on battery stored energy about 80% of the time. It visits the gas station once every 3 weeks or so.

Besides saving money on power, the system produces 7 Solar Renewable Energy Credits (SRECs) yearly. At current SREC prices, that is about $1500 a year in revenue. The homeowners own the system so all the revenue goes directly to them.

Pluto Spacecraft

Here is a picture of our DFD transfer vehicle. You can see the lander on the front and two Deep Space Optical Communication System (DSOC) assemblies mounted on trusses. There are 2 DFD engines.

PlutoDFD

A picture of the Pluto Lander. The solar panels are illuminated by a laser from the orbiter. The lander has a dry mass of 150 kg.

LunarLander

Both were designed in the Spacecraft Control Toolbox v2015.2.

You can get more information about the Pluto orbital mission on Slideshare.

Pluto Orbiter – the Next Step after New Horizons

The spectacular success of the NASA New Horizons mission has led to many new discoveries about Pluto. The next step would be to send an orbiter. That isn’t easy to do with chemical propulsion but could be done with Direct Fusion Drive.

We’ve done a preliminary mission analysis for a Pluto orbital mission. We are baselining a Delta IV Heavy that can put up to 9,306 kg into interplanetary orbits. These plots show various parameters versus mission duration. The maximum duration is the same as the New Horizons mission, 10 years.

PlutoMission2MW4Yr

Let’s use the 4 year mission as a baseline. It would use a 2 MW DFD engine to reach Pluto in about 4 years and go into orbit. The engine would thrust for 270 days out of the 4 year mission producing 110 km/s delta-V. The trajectory is shown below

PlutoTraj2MW4Yr

Once there, almost 2 MW of power would be available for the science mission, over 10000 times as much power as is available to New Horizons! The New Horizons bit rate is no more than 3000 bits per second. The high power would allow for a bit rate of over 135 Mbps for data transmission back to Earth using the JPL Deep Space Optical Communications System and a 30 kW laser transmitter. The time in transit is much shorter than New Horizons and would produce significant savings on operations costs. Launch times would be more flexible since gravity assists would not be needed.

DFD would use deuterium and helium-3 as fuels. Only 1700 L of helium-3 would be needed for this project. Current U.S. production of helium-3 is about 8,000 L per year.

Since we would be going all the way to Pluto it would make sense to include a lander. One way to power the lander is using laser power beamed from the orbiter. Here are results for a possible system, beaming over 30 Wh per pass from a 200 km orbital altitude.

LaserPower

Currently, experiments are taking place in the Princeton Field Reversed Configuration laboratory. Here is the machine in operation at the Princeton Plasma Physics Laboratory:

Experiment

The next step is to build a slightly larger machine to demonstrate fusion. Fusion power generation has been demonstrated in the Princeton Plasma Physics Laboratory Tokamak Fusion Test Reactor and the Joint European Torus but never in a machine using helium-3. A flight engine would follow. Its small size would keep the development and production costs down.

DFD would enable many challenging missions include human exploration of Mars, Europa landers and interstellar probes.

Lunar Topography

If you are sending a spacecraft to the moon, you will be interested in lunar topography. A new function in the Spacecraft Control Toolbox lets you superimpose a height map onto any sphere.

MoonTopoThe function RSHMoon.m gives you the Clementine spacecraft topographic data using a spherical harmonic expansion of the rangefinder data.

 

A new function, PlanetWithTerrain.m, lets you superimpose this data onto a sphere.

 

Continue reading

Fission Powered Lunar Lander

Settlements on the moon, for mining and scientific research, will require routine travel between lunar orbit and the lunar surface. One idea is to use a lunar shuttle with a nuclear fission rocket engine. The hydrogen fuel would come from water on the moon. Fission rockets have twice the specific impulse of the best chemical rockets leading to low fuel consumption. In addition, they would leave the oxygen from the electrolysis of water available for the lunar settlements.

Stanley Borowski of NASA/GRC is co-author of a paper giving the status of nuclear fission rockets:

NTR Technology Development and Key Activities Supporting a Human Mars Mission in the Early-2030 Timeframe

Fission rockets were developed in the 1970’s but the technology was never tested in flight. We used his paper to create a fission rocket. A 3D model based on a drawing the paper is shown below:

NTP

We built the launch vehicle using a single script in the Spacecraft Control Toolbox for MATLAB:

Spacecraft Control Toolbox 2015.1

The script uses a bilinear tangent steering law to estimate the required two way delta-v. The lander flies to 12 km where it meets a freighter. The crew is housed in an Orion spacecraft. The vehicle is shown below:

FissionNL

The landing legs are based on the Apollo Lunar Module. The liquid hydrogen is stored in the 4 spherical tanks. The nuclear thermal engine is hidden by the box to which the legs are attached. The lander lifts the Orion spacecraft and 6000 kg more of payload which would include helium-3 mined on the moon.

The Orion model was created by Amazing3DGraphics. Amazing3D is really good at creating low polygon count models that are useful for simulation and disturbance modeling.

The script and new supporting functions will be available as part of SCT Release v2015.2.