Opening for a part-time bookkeeper/administrator

We are looking for an energetic, results-oriented person able to combine the responsibilities of financial manager and coordinator of back office operations, working part time.

Responsibilities include but are not limited to:

  • financial planning and budgeting;
  • accounting and bookkeeping;
  • customer invoicing and cash management;
  • procurement;
  • HR record keeping and benefits management;
  • coordinating payroll working with an external service provider;
  • managing office facilities.

A candidate must have financial education and a proven record of at least 3 years independently performing on a job with similar responsibilities, possession of skills in QuickBooks or a similar financial package along with MS Office. Excellent communication skills are anticipated.

Please send resumes to! Also see our post on LinkedIn.

MIT Externs at Princeton Satellite Systems

Every year during MIT’s Independent Activities Period in January MIT students can apply for externships at alumni’s places of business. Externships last from one to four weeks. Over 300 undergraduate and graduate students participate each year. As part of the program, MIT also helps students find housing with alumni who live near the businesses sponsoring the externship. Externships are a great opportunity to learn about different types of career opportunities. Students apply in September and go through a competitive selection process run by the MIT Externship office.

This year Princeton Satellite Systems had two externs, Tingxao (Charlotte) Sun, a sophomore in Aeronautics and Astronautics and Eric Hinterman, a first year graduate student in Aeronautics and Astronautics. Eric started January 9th and Charlotte on the 16th after spending time on the west coast visiting aerospace companies as part of an MIT Aeronautics and Astronautics trip. Eric took a break during the externship to attend a meeting at JPL on an MIT project.

Both externs worked on our Direct Fusion Drive research program to develop a space nuclear fusion propulsion system. An artist’s conception is shown below.

Second Unit-render-1d

This project is currently funded by NASA under a NIAC grant. Eric worked primarily on the Brayton cycle heat recovery system that turns waste energy from bremsstrahlung radiation, synchrotron radiation and heat from the plasma into power that drives the rotating magnetic field (RMF) heating system. He produced a complete design and sized the system. He also wrote several MATLAB functions to analyze the system. Charlotte worked on the design of the superconducting coil support structure making good use of her Unified Engineering course skills! Here is a picture of Charlotte and Eric in front of the Princeton Field Reversed Configuration Model 2 test machine (PFRC-2) at the Princeton Plasma Physics Laboratory. Dr. Samuel Cohen, inventor of PFRC, is showing them the machine.


Both Charlotte and Eric made important contributions to our project! We enjoyed having them at Princeton Satellite Systems and wish them the best of luck in their future endeavors!

MATLAB Machine Learning Book is Now Available

Apress just published our new book, “MATLAB Machine Learning”


written by Michael Paluszek and Stephanie Thomas. The book covers a wide variety of topics related to machine learning including neural nets and decision trees. It also includes topics from automatic control including Kalman Filters and adaptive control. The book has many examples including autonomous driving, number identification and adaptive control of aircraft. Here is a view of a neural net tool included with the book.


Full source code is available. For more information go to MATLAB Machine Learning.

Princeton Satellite Systems Awarded Nuclear Fusion Patent in Japan

Princeton Satellite Systems was awarded its first patent in Japan, “Method to produce high specific impulse and moderate thrust from a fusion-powered rocket engine”. This technology was licensed from Princeton University’s Princeton Plasma Physics Laboratory. It is for a compact, low-neutron, nuclear fusion reactor that can be used as a rocket engine or as a power generator. The reactor can be built in sizes from 1 to 10 MW. A typical robotic spacecraft would use two engines. A human mission to Mars or the outer planet might use six 5 MW engines.

Here is the Japanese patent certificate.



US-Japan Compact Toroid Workshop 2016

Mike Paluszek of Princeton Systems, Sam Cohen of the Princeton Plasma Physics Laboratory and Charles Swanson also of PPPL attended the US – Japan Compact Toroid 2016 meeting in Irvine California this past August.

We presented papers related to Sam’s Princeton Field Reversed Configuration nuclear fusion reactor research program. Charles presented, “Extracting electron energy distributions from PFRC X-ray spectra,” Sam presented “Long pulse operation of the PFRC-2 device” and Mike presented, “Fusion-enabled Pluto orbiter and lander”.

Here are the workshop attendees.


It was fascinating to listen to all of the papers at the workshop! John Santarius, who has done cutting edge work on space propulsion and small fusion reactors presented his talk, “Aspects of Advanced Fuel FRC Fusion Reactors.” He gave a very informative overview of small fusion reactors and advanced fusion fuel technology. Thomas McGuire discussed the Lockheed Martin research on small reactors. There were several presentations by Tri-Alpha Energy scientists on their beam heated FRC.

We look forward to the next Compact Toroid Workshop!

Celebrate Princeton Invention 2016

Michael Paluszek and Gary Pajer of Princeton Satellite Systems attended the Celebrate Princeton Invention (CPI) 2016 reception in the Chancellor Green Rotunda on the university campus.

Our research on small nuclear fusion reactors is part of a team effort with the Princeton Plasma Physics Laboratory (PPPL) so our display was part of the PPPL booth.


The poster describes our project to design a nuclear fusion propelled robotic spacecraft to go into orbit around Pluto. It would get there in about 3 years and deploy a lander. While in orbit it would return HDTV quality images and massive amounts of data through its high power communications links.  The short duration of the trip would save almost $300M in operations costs. It would be launched from Low Earth Orbit, saving even more money!

The propulsion system could also be used for a Neptune Orbiter, missions to Jupiter’s icy moons, an Enceladus lander, asteroid deflection and human exploration of Mars. More down-to-earth applications include powering bases in Antarctica and driving the propulsion systems for unmanned underwater vehicles.

Our reactor uses helium-3 as a fuel. As the supplies of helium-3 grow, possibly from Canada’s CANDU reactors, helium gas from natural gas extraction or mining the moon, the reactor could be used to generate power everywhere. It is the ideal supplement to wind and solar power.

Gary Pajer and I talked with many attendees at CPI. Here is Gary talking with a visitor to our booth.


Visitors to our booth included researchers from Schlumberger, ExxonMobil and from around the campus. It was great fun talking to everyone and seeing all the interesting research done at Princeton University!

3-D Modelling of Direct Fusion Drive Rocket Engine

My name is Matthew Daigger and I’m a mechanical and aerospace engineering major at Princeton University going into my senior year. I was given the opportunity to intern and learn at Princeton Satellite Systems this summer. Through this internship, I got a lot of valuable experience in 3-D modelling, research and design. I was able to work with the fantastic engineers at Princeton Satellite Systems as well as Princeton Plasma Physics Lab, who helped whenever questions in their areas of expertise arose.

Side view of the reactor showing the coils

DFD CAD model generation by Matt Daigger

The Direct Fusion Drive (DFD) is an innovative and exciting new technology being designed by Princeton Satellite Systems. This Rocket engine utilizes the Princeton Reverse Field Cycle fusion reactor setup in order to create both thrust and power for a satellite. The vehicle it is currently being designed for is an exploratory satellite being sent to Pluto. What makes the DFD unique is that it can potentially halve the flight time to Pluto, from ten years to five, as well as have enough fuel left to put the satellite into orbit. Along with this, the craft should have enough extra power to deploy a rover to the surface of Pluto and power a drill. This technology could also open other exciting doors, such as manned missions to Mars, given its capability to cut travel times so drastically.

The first task I worked on this summer was looking into how to incorporate a Brayton cooling cycle into the design of the DFD. This Brayton cycle had a dual purpose. The first is to help cool the reactor and prevent too much heat and radiation from escaping and potentially damaging other parts of the satellite. The second function is to re-use this waste heat and convert it back into usable energy. Two simple brayton cycles running in parallel were chosen in order to maximize heat absorption from the reactor and power developed. The working fluid, its flow rate and the diameter of piping, as well as approximate dimensions of the turbine and compressor were also determined. Another important design factor is the ability for the satellite to withstand launch loads. Preliminary launch load calculations were also done in order to get a better idea for the stresses involved with launch using a Delta IV Heavy launch vehicle.

All of this information helped to conceptualize the physical design, which was drawn up in Inventor. The shielding and incorporation of the Brayton cycle flowing through the shielding were ideas which were confirmed by members at PSS and PPPL. The length of the reactor is a key factor in determining how high energy it will be. The length was chosen so to produce a 1 MW engine. The superconducting coils were also a main topic of research. These are active superconductors which are used to shape the plasma. This is still an ongoing process, as using active coils hasn’t been done before, and our engine has unique weight and size limitations which other similar lab reactors don’t. The debate as to whether to use high temperature or low temperature superconducting coils comes down to total size and weight, including that of a cryo-cooling system in the case of the low temperature coils. High temperature superconducting coils are the more massive option, which generally makes them less desirable for space application. The support structure was designed to keep the size compact while being able to handle the stresses calculated earlier. All information about the RMF heating coils, which are used to actually excite and drive the plasma, was received and confirmed by colleagues at Princeton Plasma Physics Lab. The separation coils at the tail-end of the thruster are power variable, and allow the expelled products to be manipulated, giving the engine high precision control in space travel.

Overall, this was an incredibly interesting and educational experience. The work that the Engineers are doing at PSS is innovative and exciting. The big ideas that are being developed here today are what lead to the next big step in space travel tomorrow. I am very thankful for the opportunity to spend my summer here and learn from some of the best engineers in the industry.

NIAC Pluto mission talk now available online

On Tuesday, August 23rd I had the privilege of giving my talk on our Fusion-Enabled Pluto Orbiter and Lander at the 2016 NIAC Symposium. The video of the LiveStream is now archived and available for viewing. My talk starts at 17:30 minutes in, after Michael VanWoerkom’s NIMPH talk.

The talk was well-received and we had some good questions from the audience and the LiveStream. In retrospect I did wish I had added a slide on our overall program plan in terms of the PFRC machine and temperature and field strength, since I got quite a few questions on those specifics at the poster session. PFRC-1 demonstrated heating electrons to 0.3 keV in 3 ms pulses. The goal of the current machine – PFRC 2 – is heating ions to 1 keV with a 1.2 kG field. The next machine I refer to in the talk, PFRC 3, would initially heat ions to 5 keV with a 10 kG field, and towards the end of its life we would push the field to 80 kG, heat ions to 50 keV, and add some helium-3 to get actual fusion events. The final goal would be 100 second-duration plasmas with a fusion gain between 0.1 and 2. A completed reactor would operate in steady-state.

Thank you NIAC for this opportunity!!

Low-jitter Reaction Wheel Prototype for Kestrel Eye

The Army is developing the Kestel Eye imaging microsatellite to provide ground imagery directly to the warfighter.    The goal of the program is to provide tactical grade images to forces on the ground at any time and deliver the images fast enough for use in fast moving ground operations. The satellite will provide battlespace awareness for rapidly evolving tactical situations on the ground, for example: the implanting of Improvised Explosive Devices (IEDs); perimeter security of forward operating locations; or movement of hostile motorized forces.

Princeton Satellite Systems is under contract to develop a control system to  meet the exacting standards of stability, satellite location, and pointing accuracy required to meet the needs of the Kestrel Eye satellite.  The objective of our work at PSS is to improve the pointing accuracy or the ground location accuracy of the Kestrel Eye imagery from 60 meters to 10 meters or less.

The features of the proposed control system that are critical to enabling this superb accuracy are:

• Ultra-precise star image centroiding with custom algorithms
• Miniature precision fiber-optic gyro for attitude base and high bandwidth control
• Low-jitter microsatellite reaction wheels utilizing Halbach array motors
• Nonlinear attitude filters incorporating star camera and nontraditional measurements • Composite structure to eliminate thermal distortion
• GPS orbit determination enhanced with two-way ranging

Recently, PSS has completed the design and fabrication of the first prototype reaction wheel.  The wheel is driven by a low-jitter axial flux brushless DC motor, the design of which is currently under patent review.   An important enabling technology is the Halbach array of magnets.  A Halbach array is sequence of permanent magnet segments, each with its magnetic axis rotated from the axis of its neighbor.  The resulting assembly concentrates almost all of the magnetic field on one side, with an almost negligible field on the other side.  This arrangement favors an axial flux motor with a single stationary stator holding coil windings sandwiched between two permanent magnet rotors, each of which has its Halbach field directed toward the stator.  The sketch shows the arrangement.  The stator is green, and the two rotors are red.


We’ve gone through a number design iterations,  settled on a first prototype design, and fabricated it.  We also purchased a simple general-purpose motor driver in order to explore the operation of the motor before moving on to developing custom driver electronics.

We’re very pleased that our first iteration works.  Here’s a video showing the device in action.

We’re already at work on the second-generation wheel incorporating lessons learned in the first prototype.