NASA NIAC Phase II selected!

We received notice today, March 31, 2017, that our NASA NIAC Phase II proposal was selected for award! We will be able to continue working on the Direct Fusion Drive with PPPL for two more years. Hooray! Dr. Joseph Minervini of MIT will be joining our team to help advance our understanding of the trade space for the superconducting coils, using the very latest data from high-temp superconductor manufacturers. It’s going to be exciting research!

Here’s a link to NASA’s official project summary.

The New Space Age Conference

Charles Swanson of PPPL and Mike Paluszek of Princeton Satellite Systems attended the MIT New Space Age Conference at MIT on March 11. It was held on the 7th floor of building E52 at MIT.


Princeton Satellite Systems was a sponsor of the event. It was a great event! There were a number of interesting presentations including one on the history of the Iridium Program. Iridium was almost ready to deorbit the constellation when an investor cobbled together enough money to keep it flying and then found a new market in places without any cell phone service. They are now  launching Iridium-Next. After the disappearance of the Malaysian Flight 370, the airlines realized that they need to know the position of all planes in real-time. Iridium offered a hosted payload to do that and that payload is effectively funding the new satellites. The speaker showed us a image from their satellite showing the tracks of aircraft.

Professor Loeb gave an overview of the Starshot project to accelerate small sails to 20% of the speed of light. He discussed some of the challenges of the program. The speed was selected specifically so that the probes would reach Alpha-Centauri during the lifespan of the investigators.

Boeing gave a talk on composite structures. The speaker, Dr. Naveed Hussain, VP of Aeromechanics Technology, The Boeing Company, showed how established companies are innovating.

Spaceflight gave a talk on their launch services. We plan to work with them to launch our test satellites.

At lunch Charles and I sat with a group of students from Mechanical and Aerospace Engineering Department at Princeton University. We were joined by Mark Jernigan, Associate Director, NASA/JSC Human Health and Performance Directorate. We talked with him about the challenges of human spaceflight to Mars.

Charles and I were on the propulsion panel. Charles gave a spectacular overview of the plasma physics of our nuclear fusion engine. I filled in the DFD system details. We had a few questions from the audience.

Our 2017 extern, Eric Hinterman, gave a great talk on the oxygen from carbon dioxide project that will be tested on Mars. It would produce the oxidizer for return missions thus saving money. My wife, Marilyn, took pictures of the panel.


At the reception we were the only sponsor with a table display.


It was a great event! We look forward to attending next year!


MIT Externs at Princeton Satellite Systems

Every year during MIT’s Independent Activities Period in January MIT students can apply for externships at alumni’s places of business. Externships last from one to four weeks. Over 300 undergraduate and graduate students participate each year. As part of the program, MIT also helps students find housing with alumni who live near the businesses sponsoring the externship. Externships are a great opportunity to learn about different types of career opportunities. Students apply in September and go through a competitive selection process run by the MIT Externship office.

This year Princeton Satellite Systems had two externs, Tingxao (Charlotte) Sun, a sophomore in Aeronautics and Astronautics and Eric Hinterman, a first year graduate student in Aeronautics and Astronautics. Eric started January 9th and Charlotte on the 16th after spending time on the west coast visiting aerospace companies as part of an MIT Aeronautics and Astronautics trip. Eric took a break during the externship to attend a meeting at JPL on an MIT project.

Both externs worked on our Direct Fusion Drive research program to develop a space nuclear fusion propulsion system. An artist’s conception is shown below.

Second Unit-render-1d

This project is currently funded by NASA under a NIAC grant. Eric worked primarily on the Brayton cycle heat recovery system that turns waste energy from bremsstrahlung radiation, synchrotron radiation and heat from the plasma into power that drives the rotating magnetic field (RMF) heating system. He produced a complete design and sized the system. He also wrote several MATLAB functions to analyze the system. Charlotte worked on the design of the superconducting coil support structure making good use of her Unified Engineering course skills! Here is a picture of Charlotte and Eric in front of the Princeton Field Reversed Configuration Model 2 test machine (PFRC-2) at the Princeton Plasma Physics Laboratory. Dr. Samuel Cohen, inventor of PFRC, is showing them the machine.


Both Charlotte and Eric made important contributions to our project! We enjoyed having them at Princeton Satellite Systems and wish them the best of luck in their future endeavors!

3-D Modelling of Direct Fusion Drive Rocket Engine

My name is Matthew Daigger and I’m a mechanical and aerospace engineering major at Princeton University going into my senior year. I was given the opportunity to intern and learn at Princeton Satellite Systems this summer. Through this internship, I got a lot of valuable experience in 3-D modelling, research and design. I was able to work with the fantastic engineers at Princeton Satellite Systems as well as Princeton Plasma Physics Lab, who helped whenever questions in their areas of expertise arose.

Side view of the reactor showing the coils

DFD CAD model generation by Matt Daigger

The Direct Fusion Drive (DFD) is an innovative and exciting new technology being designed by Princeton Satellite Systems. This Rocket engine utilizes the Princeton Reverse Field Cycle fusion reactor setup in order to create both thrust and power for a satellite. The vehicle it is currently being designed for is an exploratory satellite being sent to Pluto. What makes the DFD unique is that it can potentially halve the flight time to Pluto, from ten years to five, as well as have enough fuel left to put the satellite into orbit. Along with this, the craft should have enough extra power to deploy a rover to the surface of Pluto and power a drill. This technology could also open other exciting doors, such as manned missions to Mars, given its capability to cut travel times so drastically.

The first task I worked on this summer was looking into how to incorporate a Brayton cooling cycle into the design of the DFD. This Brayton cycle had a dual purpose. The first is to help cool the reactor and prevent too much heat and radiation from escaping and potentially damaging other parts of the satellite. The second function is to re-use this waste heat and convert it back into usable energy. Two simple brayton cycles running in parallel were chosen in order to maximize heat absorption from the reactor and power developed. The working fluid, its flow rate and the diameter of piping, as well as approximate dimensions of the turbine and compressor were also determined. Another important design factor is the ability for the satellite to withstand launch loads. Preliminary launch load calculations were also done in order to get a better idea for the stresses involved with launch using a Delta IV Heavy launch vehicle.

All of this information helped to conceptualize the physical design, which was drawn up in Inventor. The shielding and incorporation of the Brayton cycle flowing through the shielding were ideas which were confirmed by members at PSS and PPPL. The length of the reactor is a key factor in determining how high energy it will be. The length was chosen so to produce a 1 MW engine. The superconducting coils were also a main topic of research. These are active superconductors which are used to shape the plasma. This is still an ongoing process, as using active coils hasn’t been done before, and our engine has unique weight and size limitations which other similar lab reactors don’t. The debate as to whether to use high temperature or low temperature superconducting coils comes down to total size and weight, including that of a cryo-cooling system in the case of the low temperature coils. High temperature superconducting coils are the more massive option, which generally makes them less desirable for space application. The support structure was designed to keep the size compact while being able to handle the stresses calculated earlier. All information about the RMF heating coils, which are used to actually excite and drive the plasma, was received and confirmed by colleagues at Princeton Plasma Physics Lab. The separation coils at the tail-end of the thruster are power variable, and allow the expelled products to be manipulated, giving the engine high precision control in space travel.

Overall, this was an incredibly interesting and educational experience. The work that the Engineers are doing at PSS is innovative and exciting. The big ideas that are being developed here today are what lead to the next big step in space travel tomorrow. I am very thankful for the opportunity to spend my summer here and learn from some of the best engineers in the industry.

NIAC Pluto mission talk now available online

On Tuesday, August 23rd I had the privilege of giving my talk on our Fusion-Enabled Pluto Orbiter and Lander at the 2016 NIAC Symposium. The video of the LiveStream is now archived and available for viewing. My talk starts at 17:30 minutes in, after Michael VanWoerkom’s NIMPH talk.

The talk was well-received and we had some good questions from the audience and the LiveStream. In retrospect I did wish I had added a slide on our overall program plan in terms of the PFRC machine and temperature and field strength, since I got quite a few questions on those specifics at the poster session. PFRC-1 demonstrated heating electrons to 0.3 keV in 3 ms pulses. The goal of the current machine – PFRC 2 – is heating ions to 1 keV with a 1.2 kG field. The next machine I refer to in the talk, PFRC 3, would initially heat ions to 5 keV with a 10 kG field, and towards the end of its life we would push the field to 80 kG, heat ions to 50 keV, and add some helium-3 to get actual fusion events. The final goal would be 100 second-duration plasmas with a fusion gain between 0.1 and 2. A completed reactor would operate in steady-state.

Thank you NIAC for this opportunity!!

Low-jitter Reaction Wheel Prototype for Kestrel Eye

The Army is developing the Kestel Eye imaging microsatellite to provide ground imagery directly to the warfighter.    The goal of the program is to provide tactical grade images to forces on the ground at any time and deliver the images fast enough for use in fast moving ground operations. The satellite will provide battlespace awareness for rapidly evolving tactical situations on the ground, for example: the implanting of Improvised Explosive Devices (IEDs); perimeter security of forward operating locations; or movement of hostile motorized forces.

Princeton Satellite Systems is under contract to develop a control system to  meet the exacting standards of stability, satellite location, and pointing accuracy required to meet the needs of the Kestrel Eye satellite.  The objective of our work at PSS is to improve the pointing accuracy or the ground location accuracy of the Kestrel Eye imagery from 60 meters to 10 meters or less.

The features of the proposed control system that are critical to enabling this superb accuracy are:

• Ultra-precise star image centroiding with custom algorithms
• Miniature precision fiber-optic gyro for attitude base and high bandwidth control
• Low-jitter microsatellite reaction wheels utilizing Halbach array motors
• Nonlinear attitude filters incorporating star camera and nontraditional measurements • Composite structure to eliminate thermal distortion
• GPS orbit determination enhanced with two-way ranging

Recently, PSS has completed the design and fabrication of the first prototype reaction wheel.  The wheel is driven by a low-jitter axial flux brushless DC motor, the design of which is currently under patent review.   An important enabling technology is the Halbach array of magnets.  A Halbach array is sequence of permanent magnet segments, each with its magnetic axis rotated from the axis of its neighbor.  The resulting assembly concentrates almost all of the magnetic field on one side, with an almost negligible field on the other side.  This arrangement favors an axial flux motor with a single stationary stator holding coil windings sandwiched between two permanent magnet rotors, each of which has its Halbach field directed toward the stator.  The sketch shows the arrangement.  The stator is green, and the two rotors are red.


We’ve gone through a number design iterations,  settled on a first prototype design, and fabricated it.  We also purchased a simple general-purpose motor driver in order to explore the operation of the motor before moving on to developing custom driver electronics.

We’re very pleased that our first iteration works.  Here’s a video showing the device in action.

We’re already at work on the second-generation wheel incorporating lessons learned in the first prototype.

NEA Scout Toolbox

Near-Earth Asteroid Scout, or NEA Scout is a exciting new NASA mission to map an asteroid and achieve several technological firsts, including being the first CubeSat to reach an asteroid and demonstrate CubeSat technologies in deep space.


NEA Scout will perform a survey of an asteroid using a CubeSat and solar sail propulsion and gather a wide range of scientific data. NEA Scout will be launched on the first Space Launch System (SLS) launch.

NASA asked Princeton Satellite Systems to develop custom MATLAB software based on the Princeton Satellite Systems Spacecraft Control Toolbox and Solar Sail Module to assist with this mission. We just delivered our first software release to NASA!

The NEA Scout module provides MATLAB scripts that simulate the spacecraft. One, TrajectorySimulation, simulates just the trajectory. It includes a solar sail force model and uses the JPL Ephemerides to compute the gravitational forces on the sail. In addition it can use a 150 x 150 Lunar Gravity model during lunar flybys. It also simulates the orbit dynamics of the target asteroid.

AttitudeSimulation expands on this script. It adds attitude, power and thermal dynamics to the model. A full Attitude Control System (ACS) is included. This ACS uses reaction wheels and optionally cold gas thrusters for control. Momentum unloading can be done with the thrusters our using NASA’s Active Mass Translation (AMT) system that moves one part of the CubeSat relative to the other to adjust the center-of-mass so that it aligns with the system center-of-pressure or adds a slight offset to unload momentum. The control system reads command lists that allows the ACS to perform attitude maneuvers, do orbit changes with thrusters and for the user to change parameters during simulations. It adds the rotational dynamics of the asteroid.

The dynamics of the AMT can be modeled either with a lag on the position or a full multi-body model. Dynamics of the reaction wheels, including a friction model, are included in the simulation. The following are a few figures from a typical simulation.

The first figure shows reaction wheel torques during attitude maneuvers. The ACS uses quaternions as its attitude reference. You can mix reaction wheels and thrusters or use either by themselves for attitude control.


This GUI shows the current command and allows you to control the simulation.


The Figure GUI lists all figures generated by the simulation. It makes it easy to find plots when you have many, as you do in the attitude simulation.


The Telemetry GUI gives you telemetry from the ACS system. You can easily add more data to the telemetry GUI which can have multiple pages.


This figure shows solar sail pointing during simulations.


The following figure shows the spacecraft with its solar sail deployed. This is built in the CAD script using the  Spacecraft Control Toolbox CAD functions. The sail is 83 meters square.


The sail is huge but the core spacecraft would sit comfortably on your desk.

If you want more information about our products or our customization services you can email us directly by clicking  Mission Simulation Tools.

NIAC Orientation

I had a great time at the NIAC orientation in Washington DC last week, where I got “mugged” with program manager Jason Derleth:

Stephanie Thomas and Jason Derleth posing with a NIAC mug

Stephanie receiving her NIAC mug from Jason

The meeting was at the Museum of the American Indian, which was a great venue with so much beautiful art to see, and a cafe featuring unusual native foods from across America (elderberry sauce on the salmon). I had the opportunity to meet the other NIAC Fellows, and put names and faces to the other creative projects selected, as well as meet the illustrious NIAC external council. These experienced folks provide advice and encouragement throughout the NIAC process from their experience as physicists, engineers, biologists, science hackers, and even science fiction authors.

I have to say, my poster on the fusion rocket engine was popular, and everyone wanted to know how it works, why it hasn’t been funded already, and how soon the engine can be ready. Of course, we have yet to actually demonstrate fusion using Dr. Cohen’s heating method, but that is why we need the NIAC study – to flesh out the science and engineering of the rocket application to help bring in funding for building the next generation machine. And yes, let’s get to Pluto in only 4 years the next time! I’m really looking forward to working on the project in the next few months and presenting it at the NIAC symposium in August!


PSS NASA project on SciShow

We just discovered that our NASA NIAC project on the DFD mission to Pluto was covered in a SciShow episode from June 14, 2016.

Hank Green does a great job talking about our project, and I love that he called it a “Pluto Explorer”, which rolls of the tongue better than “Pluto Orbiter and Lander”. However, he did get our fuel wrong: we are using deuterium and Helium-3, a reaction which produces no damaging neutrons. Hank cited “two types of heavy hydrogen”, which would imply deuterium-tritium fusion; this produces most of its every in very damaging neutrons, and is a reaction we go to great lengths to avoid in our machine. There will always be some tritium produced from the side reactions of deuterium with itself, but our machine is designed to exhaust it before it can fuse.

The comments from the viewers were interesting, including several along the lines of, “wait, did I miss fusion becoming a working technology?” Of course the fusion rocket is still theoretical, but it’s based on a real plasma heating experiment going on now at Princeton Plasma Physics Lab! And its true that many people don’t realize that fusion itself has been achieved in many machines, just not break-even fusion. Our machine is very different from the large tokamaks most people are familiar with.