Princeton Satellite Systems Awarded Nuclear Fusion Patent in Japan

Princeton Satellite Systems was awarded its first patent in Japan, “Method to produce high specific impulse and moderate thrust from a fusion-powered rocket engine”. This technology was licensed from Princeton University’s Princeton Plasma Physics Laboratory. It is for a compact, low-neutron, nuclear fusion reactor that can be used as a rocket engine or as a power generator. The reactor can be built in sizes from 1 to 10 MW. A typical robotic spacecraft would use two engines. A human mission to Mars or the outer planet might use six 5 MW engines.

Here is the Japanese patent certificate.

certificate-of-patent-c3-00001

certificate-of-patent-c3-00002

US-Japan Compact Toroid Workshop 2016

Mike Paluszek of Princeton Systems, Sam Cohen of the Princeton Plasma Physics Laboratory and Charles Swanson also of PPPL attended the US – Japan Compact Toroid 2016 meeting in Irvine California this past August.

We presented papers related to Sam’s Princeton Field Reversed Configuration nuclear fusion reactor research program. Charles presented, “Extracting electron energy distributions from PFRC X-ray spectra,” Sam presented “Long pulse operation of the PFRC-2 device” and Mike presented, “Fusion-enabled Pluto orbiter and lander”.

Here are the workshop attendees.

2016us-japanworkshoponcompacttori-groupphotoirvineca

It was fascinating to listen to all of the papers at the workshop! John Santarius, who has done cutting edge work on space propulsion and small fusion reactors presented his talk, “Aspects of Advanced Fuel FRC Fusion Reactors.” He gave a very informative overview of small fusion reactors and advanced fusion fuel technology. Thomas McGuire discussed the Lockheed Martin research on small reactors. There were several presentations by Tri-Alpha Energy scientists on their beam heated FRC.

We look forward to the next Compact Toroid Workshop!

NIAC Pluto mission talk now available online

On Tuesday, August 23rd I had the privilege of giving my talk on our Fusion-Enabled Pluto Orbiter and Lander at the 2016 NIAC Symposium. The video of the LiveStream is now archived and available for viewing. My talk starts at 17:30 minutes in, after Michael VanWoerkom’s NIMPH talk.

The talk was well-received and we had some good questions from the audience and the LiveStream. In retrospect I did wish I had added a slide on our overall program plan in terms of the PFRC machine and temperature and field strength, since I got quite a few questions on those specifics at the poster session. PFRC-1 demonstrated heating electrons to 0.3 keV in 3 ms pulses. The goal of the current machine – PFRC 2 – is heating ions to 1 keV with a 1.2 kG field. The next machine I refer to in the talk, PFRC 3, would initially heat ions to 5 keV with a 10 kG field, and towards the end of its life we would push the field to 80 kG, heat ions to 50 keV, and add some helium-3 to get actual fusion events. The final goal would be 100 second-duration plasmas with a fusion gain between 0.1 and 2. A completed reactor would operate in steady-state.

Thank you NIAC for this opportunity!!

NIAC Orientation

I had a great time at the NIAC orientation in Washington DC last week, where I got “mugged” with program manager Jason Derleth:

Stephanie Thomas and Jason Derleth posing with a NIAC mug

Stephanie receiving her NIAC mug from Jason

The meeting was at the Museum of the American Indian, which was a great venue with so much beautiful art to see, and a cafe featuring unusual native foods from across America (elderberry sauce on the salmon). I had the opportunity to meet the other NIAC Fellows, and put names and faces to the other creative projects selected, as well as meet the illustrious NIAC external council. These experienced folks provide advice and encouragement throughout the NIAC process from their experience as physicists, engineers, biologists, science hackers, and even science fiction authors.

I have to say, my poster on the fusion rocket engine was popular, and everyone wanted to know how it works, why it hasn’t been funded already, and how soon the engine can be ready. Of course, we have yet to actually demonstrate fusion using Dr. Cohen’s heating method, but that is why we need the NIAC study – to flesh out the science and engineering of the rocket application to help bring in funding for building the next generation machine. And yes, let’s get to Pluto in only 4 years the next time! I’m really looking forward to working on the project in the next few months and presenting it at the NIAC symposium in August!

 

SunStation in October

The following image shows SunStation in operation on a bright October day! The load for the day was 12.4 kWh. This includes charging a Nissan Leaf and a Toyota Prius Plugin-in. The total power generated was 40.3 kWh and 21.4 kWh was sold to the grid. As you can see, the installation is much more than carbon neutral with regard to electrical power. It has a gas heating system so is not completely carbon neutral.

OPTICSRE

The orange line is the state of charge for the batteries. The 14.4 kWh of batteries is enough to keep the home running, charge the Prius fully and the Leaf partially, when the grid is down. The system automatically disconnects itself from the grid when there is an outage.

The house itself is fairly energy efficient with mostly LED lights and a few CFLs. The heating system is high efficiency with a 60 W fan that operates most of the time. The house is air-tight and has a whole house air exchange system that operates continuously. The refrigerator is 10 years old and the washer and dryer are less than 10 years old. As you can see, the typical load is 500 W except when the cars are charging. The efficiency could be further improved by installing a state-of-the-art central air system and replacing the refrigerator.

The Nissan Leaf is 100% electric. On a normal day the Prius operates on battery stored energy about 80% of the time. It visits the gas station once every 3 weeks or so.

Besides saving money on power, the system produces 7 Solar Renewable Energy Credits (SRECs) yearly. At current SREC prices, that is about $1500 a year in revenue. The homeowners own the system so all the revenue goes directly to them.

SunStation in Operation!

SunStation is in operation! The system produces a peak of 7.8 kW solar power. It has 14 kWh of lithium batteries. The SunStation electronics are shown below. The inverter is on the left. The batteries are in the cabinet on the right.

SunStation

The SunStation has a web interface. You can see that when this screen shot was made the SunStation was selling 5.1 kW back to the power company! The batteries are fully charged. Usage was very small. The house has a whole house ventilator that is drawing most of the power. The homeowners also own a Nissan Leaf and a Toyota Prius Plugin. The solar array is enough to fully recharge those cars and run the house electrical devices when the air conditioning is not on.

SunStationWebInterface

Unlike gasoline, diesel or natural gas systems SunStation provides power year round! There is no noise and no toxic emissions. SunStation has no moving parts and is zero maintenance. Solar power systems are eligible for Solar Renewable Energy Credits which are cash payments for having an operating solar power system. It is estimated that this system will bring in $3700/year revenue between selling power and SRECs.

SunStation Installed!

The first SunStation installation is done! This system includes 14 kWh of Valence lithium batteries and an Outback inverter. Unlike most other solar power systems, the solar panels will deliver power to the house with or without the grid active.

SunStationInstalled

An existing 3.8 kW array was augmented with the new Panasonic solar panels on the right. They are about the same size as the older Sharp panels but much more efficient. In the bottom picture you can see the Outback inverter. The cabinet on the lower right houses the Valence batteries. The system will power the entire house in an outage with the exception of the central air conditioning system.

Unlike gasoline, diesel or natural gas systems this system provides power year round! There is no noise and no toxic emissions. SunStation has no moving parts and is zero maintenance. Solar power systems are eligible for Solar Renewable Energy Credits too which are cash payments for having an operating solar power system so you save money two ways.

Check out our SunStation page for more information!

Nuclear Fusion Power

Nuclear fusion power research started in earnest in the 1950’s. Initially, researchers thought that the work needed to produce a fusion power plant would be comparable to that needed to produce the first fission plants. That turned out to be unrealistic as the physics was not well understood and plasma confinement was much more difficult than expected. Many of the first machines were Stellarators. One of the first was Lyman Spitzer’s Stellarator at the Princeton Plasma Physics Laboratory (PPPL).

Many machine geometries were tried such as mirrors and pinches. In the 1960’s the Soviets disclosed success with the Tokamak (тороидальная камера с аксиальным магнитным полем). Unlike the Stellarators, Tokamaks have a circulating current that helps confine the plasma. Since then Tokamaks have been the focus of fusion power research. The Princeton Plasma Physics Laboratory produced 10.7 MW of fusion power in 1994 in the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET) produced 22 MW of fusion power in 1997. In 1998 the Japanese JT-60 produced an equivalent power gain of 1.25, that is 1.25 MW of fusion power for 1 MW of input power. The next step in Tokamaks is the International Thermonuclear Experimental Reactor (ITER).

ITER is a large-scale scientific experiment to demonstrate that it is possible to produce commercial energy from fusion. Its goal is to produce a fusion power gain of 10 at a power level of 500 MW and to generate this power for 500 seconds. Operation with tritium is scheduled to begin in 2027. The next step after ITER is DEMO which will be a prototype of a practical fusion power plant. Demo will produce between 2 and 4 GW of thermal power and have a power gain of 25. After DEMO the next machine will be PROTO which will be a fully commercial power plant. PROTO is expected to built after 2050.

In parallel with ITER many other magnetic confinement devices are under test. These include the U.S. National Spherical Tokamak (NSTX) and the Princeton Field Reversed Configuration (on which DFD is based) both at PPPL. Many new Stellarators are under test including the Wendelstein 7-X in Germany, the Helically Symmetric eXperiment (HSX) in the U.S. and the Large Helical Device in Japan. These devices may result in more economical fusion machines than Tokamaks. The field of fusion researchis very vibrant and work around the world is serving to improve our knowledge of plasma physics and the help solve the engineering problems. For example, recently a new method for reducing instabilities was developed at JET.

The first commercial reactors will likely use deuterium and lithium as fuels. The reaction (used in TFTR, JET and ITER) is deuterium and tritium but in a commercial plant the tritium would be produced from the neutron bombardment of lithium as the D-T reaction produces most of its energy in energetic neutrons. Advanced fuels like deuterium helium 3 and boron proton that produce fewer neutrons are also under investigation. Deuterium and helium 3 would power the DFD. The boron-proton reaction would power TriAlpha’s reactor.