Two Stage to Orbit with the Launch Vehicle Toolbox

The Launch Vehicle Toolbox (LVT) combines the Spacecraft Control Toolbox, the Aircraft Control Toolbox and additional libraries of launch vehicle functions and scripts. We’ve used it internally to support a number of contracts.

We have studied two stage to orbit vehicles for a number of years. Our design, known as Space Rapid Transit, uses an aircraft first stage (the Ferry) with a turbo-ramjet engine to take the launch vehicle to 40 km and Mach 6.5. The turbo-ramjet engine is dual fuel using jet fuel for the turbofan and hydrogen for the ramjet. The turbofan core would be based on an existing modern jet engine. A hydrogen fueled turbo-ramjet was tested by MBB for their Sanger launch vehicle. Hydrogen fueled ramjets have been tested by NASA. The SR-71 engine was an early operational turbo-ramjet.

The Orbiter uses a cryogenic hydrogen/oxygen engine to enter the transfer ellipse and then circularize the orbit. The Ferry engine can operate in pure turbofan mode for efficient low-speed operations such as moving the Orbiter between airfields.

TSTODemo.m is a LVT script that models the trajectory from takeoff through circular orbit insertion. The TSTO stack starts on the runway in takeoff mode. When it is moving at the takeoff speed it pulls up and climbs. It transitions from turbofan to ramjet and climbs to the separation altitude and velocity. The simulation works with flight path and heading angles. You can try flying the vehicle in a variety of trajectories. The following figure shows the trajectory up to Ferry/Orbiter separation.

SRTTrajectory

The Space Rapid Transit vehicle is documented in this paper:

Paluszek, M. and J. Mueller, Space Rapid Transit – A Two Stage to Orbit
Fully Reusable Launch Vehicle, IAC-14,C4,6.2, International Astronautical Congress, Toronto, Ontario Canada, October 2014.

The Orbiter starts at the termination condition. The script computes a transfer orbit and the necessary velocity changes to get the Orbiter into an ISS altitude orbit. Part of the delta-V is the drag loss. The Orbiter trajectory is not simulated. The architecture of LVT makes it easy to build these kind of analysis and simulation scripts. Your aren’t locked into a specific design path as can happen with GUI based tools.

For more information go to Launch Vehicle Toolbox for MATLAB.

This entry was posted in Aerospace, General and tagged , by Michael Paluszek. Bookmark the permalink.

About Michael Paluszek

Michael Paluszek is President of Princeton Satellite Systems. He graduated from MIT with a degree in electrical engineering in 1976 and followed that with an Engineer's degree in Aeronautics and Astronautics from MIT in 1979. He worked at MIT for a year as a research engineer then worked at Draper Laboratory for 6 years on GN&C for human space missions. He worked at GE Astro Space from 1986 to 1992 on a variety of satellite projects including GPS IIR, Inmarsat 3 and Mars Observer. In 1992 he founded Princeton Satellite Systems.

Leave a Reply

Your email address will not be published. Required fields are marked *