Artemis: NASA RFP for Lunar Landers

NASA recently released a request for proposal for a lunar lander with a due date of November 1.

https://www.nasa.gov/feature/fast-track-to-the-moon-nasa-opens-call-for-artemis-lunar-landers

NASA would like a crew to land on the moon by 2024.

We didn’t have time to write a proposal, but here is our design. We propose a single stage vehicle, that can land from and return to a 15 km circular orbit. It uses 2 Blue Origins BE-3U engines that use cryogenic hydrogen and oxygen. An Orion capsule houses the astronauts. The Orion would take astronauts to and from Gateway and to and from the Earth. Lockheed Martin is building the Orion spacecraft. The European Space Agency is building the service module. A separate transport would bring fuel and payload to the lander. In the future, the lander could be refueled from lunar water.

The dimensions are in meters. The Orion is shown below. We purchased the model from https://hum3d.com.

The landing gear were scaled from the Apollo Lunar module.

It is interesting to compare its size with the Apollo Lunar Module. The Artemis is designed to fit into the 10 m SLS fairing. This a fully reusable lunar vehicle that can be refueled. It is designed for a long-term, sustainable, lunar base.

We use two toroidal hydrogen tanks and two spherical oxygen tanks. The cylinder on the outside is the solar array producing 34 kW of power. Of course, numerous details are omitted. We developed this model using our Spacecraft Control Toolbox. The design script will be available in the Spacecraft Control Toolbox Version 2019.1 due in mid-November.

Other elements of the lander were designed for different purposes. The GN&C system is based on our Army Precision Attitude Control System.

Our control system is based on a robotic lander we designed some time ago. We have full C++ code for the control and guidance system.

The architecture for Earth/Moon transportation system is shown below. Eventually, a Direct Fusion Drive freighter would be the main way of moving cargo between Earth orbit, lunar orbit and Gateway. The lander would remain in lunar orbit. Humans would go to the moon using fast orbital transfer, much like during Apollo.

Our next blog post will show how we get from Gateway to and from our 15 km starting orbit. A subsequent post will demonstrate our lunar landing guidance that uses a neural network for navigation based on images of the surface. Using it for landing would require higher resolution images than we have today, but short of building a lunar GPS system, it might be more cost-effective to have a satellite assembling images from low lunar orbit.

We will also update this blog post from time to time. Stay tuned!

This entry was posted in Aerospace, General, Software and tagged , , , , , , by Michael Paluszek. Bookmark the permalink.

About Michael Paluszek

Michael Paluszek is President of Princeton Satellite Systems. He graduated from MIT with a degree in electrical engineering in 1976 and followed that with an Engineer's degree in Aeronautics and Astronautics from MIT in 1979. He worked at MIT for a year as a research engineer then worked at Draper Laboratory for 6 years on GN&C for human space missions. He worked at GE Astro Space from 1986 to 1992 on a variety of satellite projects including GPS IIR, Inmarsat 3 and Mars Observer. In 1992 he founded Princeton Satellite Systems.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.