About Michael Paluszek

Michael Paluszek is President of Princeton Satellite Systems. He graduated from MIT with a degree in electrical engineering in 1976 and followed that with an Engineer's degree in Aeronautics and Astronautics from MIT in 1979. He worked at MIT for a year as a research engineer then worked at Draper Laboratory for 6 years on GN&C for human space missions. He worked at GE Astro Space from 1986 to 1992 on a variety of satellite projects including GPS IIR, Inmarsat 3 and Mars Observer. In 1992 he founded Princeton Satellite Systems.

Space Movies

Movies about space, both fiction and historical, have inspired engineers and scientists since movies were first produced. Here is my list of movies. I’ve included links to IMDB.

Moon. This movie is a realistic depiction of helium-3 mining on the moon, with an interesting twist. Helium-3 is an isotope of helium used for a wide variety of applications including quantum computing. would be used to fuel our Princeton Field Reversed Configuration Reactor and Helion‘s fusion reactor. An alternative to lunar mining is gas giant mining. We recently wrote a paper on the subject.

Forbidden Planet   From the 1950s. It was a major influence on Star Trek. It is based on Shakespeare’s “The Tempest”.

2001: A Space Odyssey. Released just before Apollo 11. It influenced aerospace engineering in a major way. HAL 9000 is also quite famous, the first AI with a major role in a movie.

Marooned About an Apollo spacecraft that can’t reenter and a rescue mission to save the crew. Technically accurate! It is what NASA might have done for Columbia. Gregory Peck is the head of NASA.

The Right Stuff About the Mercury astronauts and test pilots in the 1950s. Test pilot Chuck Yeager is a major character. While based on real events, it is a black comedy.

Apollo 13 About the near disaster during the Apollo program. One of the best engineering movies ever made. A famous quote from John Aaron, “Power is everything!” and one from Gene Kranz, “Let’s not make things worse by guessing!”

Hidden Figures. A movie about the African-American female mathematicians who made critical contributions to the U.S. space program, but were ignored by the press.

India’s Chandrayaan-3 Lands on the Moon!

Congratulations to the Indian Space Research Organization for the successful landing of the Chandrayaan-3 spacecraft on the moon! This is the first spacecraft to land near the Lunar South Pole. The spacecraft includes a rover. The spacecraft will return information that will help future missions.

ARPA-E Fusion Programs Annual Meeting

I attended the ARPA-E Fusion Programs Annual Meeting at the Omni Parker House Hotel in Boston, MA, June 14-15, 2023. The hotel is a landmark situated in the very heart of Boston. Here is a detail of the elevator.

The meeting venue was spectacular. We were on the top floor of the Omni Parker House. The food was excellent. The service in the hotel was the best I’ve seen. If you visit Boston it is a great place to stay.

The meeting included ARPA-E GAMOW, BETHE, and OPEN 2021 grant recipients. The meeting provided a great snapshot of all the work underway, including advances by several prominent companies including Commonwealth Fusion Systems, Zap Energy, and Type One Energy. The University of Maryland presented the status of its centrifugal mirror, and the RealTa Fusion gave the latest results for its high-field mirror. Other teams gave talks on their technology. Our talk was on our work in Wide Band Semiconductors. We presented Prof. Minjie Chen’s work on RF heating with boards that adapt to the plasma. We discussed our work on boards for pulse width modulation, high current short pulses, and very high voltage converters. I was the only speaker to finish early, in 7 minutes, so I was allowed one question which was on board cooling. I presented work by Princeton University, Qorvo and the National Renewable Energy Laboratory (NREL).

Here are our posters. The top gives an overview and our pulse circuits. The bottom gives the work of Qorvo, Princeton University, and NREL. Our teams span the full range of technologies needed for high-performance power electronics.

Prof. Nat Fisch of PPPL gave an interesting talk on his concept for a boron proton reactor. In it, they heat only the protons, to 600 keV, and the hot protons collide with cold boron to produce fusion.

Prof. Andrew W. Lo of the MIT Sloan School gave a great talk on how to finance fusion through financial engineering. He explained the concept of present value, which is how pharmaceutical companies are valued. He suggested a fund composed of all fusion companies. A large number of modest investments would provide sufficient funding for fusion energy development. If even a couple succeeded the fund would make a lot of money. This approach spreads the risk around to a large group of people.

Prof. Lo also discussed the similarities between fusion research and drug discovery. Both involve large investments that have low probabilities of success. He talked about the work of Prof. Harvey Lodish of MIT who went on to start several biotech companies. His early work led to a therapy that saved the life of his grandchild.

Commonwealth Fusion Systems sponsored a reception after the meeting. It was another opportunity to chat with the participants. I spoke with people from ENERGY for the COMMON GOOD who are educating people on fusion technology.

On Friday we went on a tour of Commonwealth Fusion Systems (CFS) and the MIT Plasma Science and Fusion Center (PSFC).

CFS has an impressive new facility where they are building SPARC, their fusion test reactor. We saw the tokamak hall and the room where they are building their High-Temperature Superconducting magnets.

We next went to PSFC. PSFC hosted the Alcator machines that operated at 12 T and reached record plasma pressures. Alcator is being disassembled. The picture shows what remains.

They hope to replace it with a cyclotron for materials testing. Dr. Earl Marmar led our tour group.

I talked with many colleagues during the event. I’d say it was the best fusion energy event I’ve attended and I look forward to next year’s fusion meeting.

Rankine Cycle MATLAB Software

Rankine cycles are used to produce power from coal and nuclear fission power plants. They also serve as the bottoming cycle for combined cycle power plants. In the future, the Rankine cycle may be used to produce power from nuclear fusion power plants.

Princeton Satellite Systems has added Rankine cycle functions to release 2023.1 of its MATLAB toolboxes, which is coming soon. The following figures show the output from the function RankineCycle.m. The first diagram is the temperature entropy (T-s) diagram. Entropy can be viewed as the state of disorder in the system.

The red lines indicate the simple Rankine cycle while the bell-shaped curve is the T-s curve for water and steam. The second output is the cycle diagram, shown below.

Entropies are displayed on this diagram. You only need two pressures to define the cycle: the base and the peak. The pump compresses water which is fed to the boiler. The boiler produces steam that is converted to mechanical energy in the steam turbine. This drives a generator to produce electric power. The fluid output of the turbine passes through the condenser to become water.

This is the simplest Rankine cycle. The numbers on the diagram correspond to the numbers on the T-s diagram. The cycle is defined per unit mass of water flowing in the cycle so it can be scaled to any size. The MATLAB code has functions for handling steam tables, which are essential to studying or designing steam engines.

The Rankine cycle can be improved by adding reheat or regeneration. Organic liquids can also be used in place of water.

Contact us for more information!

Final Titan Aircraft Paper Published in Acta Astronautica

The final version of our paper, “Nuclear Fusion Powered Titan Aircraft,” by Mr. Michael Paluszek, Ms. Annie Price, Ms. Zoe Koniaris, Dr. Christopher Galea, Ms. Stephanie Thomas, Dr. Samuel Cohen, and Ms. Rachel Stutz is now available, open access, on the Acta Astronautica website. As described in our earlier post, the paper discusses a mission to Titan using the Direct Fusion Drive on the transfer vehicle, and a Princeton Field Reversed Configuration reactor to power an aircraft, that could fly around Titan for years. The reactor allows for high-power instruments, some of which were first proposed for the NASA Jupiter Icy Moon Orbiter Mission. The paper was first presented at IAC 2022 in Paris.

Two key figures were updated from the preprint version of the paper – Figure 11 and Figure 12, showing the power flow and mass breakdown of the PFRC for the electric aircraft. The earlier figures were from a larger version of the engine. The final engine design produces 0.5 MWe and has a mass of 1006 kg. This is now consistent with the system masses presented in Table 6. Vehicle Power and Payloads.

Universe Today has published an article about our mission study, “What if Titan Dragonfly had a fusion engine?”

Submarine Supplier Days 2023

I attended Submarine Supplier Days 2023 in Washington, D.C. March 7 and 8. It is an opportunity for companies contributing to building the latest attack and ballistic missile submarines to get together. The two big programs are for the Columbia Class fleet ballistic missile submarine and the Virginia Class attack submarines. Australia will be buying four of th e latter. I attended the meeting to introduce people to the potential of PFRC as a power plant for future submarines. The first day was a series of presentations on the latest submarines.

On the next day we visited the offices of our N.J. U.S. Representatives and Senators to gain their support for the submarine programs. Here is the inside of the Senate office building with its Calder sculpture.

It was fun to meet people building the submarines. One company in New Jersey has a sole source contract to weld components of the submarines. Each weld is signed by a welder so it can be traced back should a problem arise.

I learned that there are major problems with materials supply and with finding workers to build the submarines. Lead times on some materials can be 80 months. The issues of on-again/off-again production were also discussed. We all agreed, as did the Congressional and Senate staffers, that continuing resolutions were bad.

You can get our submarine brochure here.

Ford Mach-E on the Road

One of the biggest concerns people have with electric vehicles is charging. We’ve taken our Mach-E on two trips with different approaches to charging. Our experience is with a rear-wheel drive Mach-E with the extended range battery. Its EPA range is 303 miles.

The first was from Princeton to the Berkshires, then to Boston and then back to Princeton. The trips were made without any charging on the way. We used Level 2 chargers at our destinations. The Williams Inn, in Williamstown, had ChargePoint chargers, as did the Cambridge Marriott in Kendall Square in Cambridge, MA. At the Cambridge Marriott, there are ChargePoint chargers in the garage used by the valets. The valets are willing to plug your car in as long as you have a ChargePoint card.

The picture blow shows our current mileage.

The most recent trip was from Princeton to Pittsburgh. The one-way distance of 330 miles necessitated charging on the road. We used the Ford app, which showed two stops. We didn’t follow its plan. Instead, we broke the trip into two segments each way with one charging stop. Prior to the trip we tested the high power charging at a local EVGo station.

In both directions we stopped at the Electrify America charging station at 1098 Harrisburg Pike in Carlisle. It was only 2 miles from the highway at a location with the Sheetz convenience store. There were two 350 kW chargers and two 150 kW chargers. Here is the station on the way to Pittsburgh.

It took about 20 minutes to charge from 30% to 80%. We charged until Apple Maps said we had 20% battery margin at our destination. In both directions we ended up with about 15% margin. In Pittsburgh we did destination charging at the Forbes Tower garage. The garage was $22 for 24 hours and charging was free. It was a short walk from the Residence Inn.

On the way to Pittsburgh we were joined at the charging station by two Ford F-150 Lightning trucks. On the way back, we were joined by another Mach-E.

The Electrify America stations were seamless. We have 250 kWh of free charging from Ford. The station knew all about the free charging and we didn’t have to pay or do anything else to be reimbursed. It was simply plug and charge.

PlugShare was the most reliable way to find charging stations.

We drove a Tesla Model 3 as a Hertz rental In Chicago. We charged once at a SuperCharger. It worked very well! I’d say the Electrify America experience was its equal.

PFRC Article in the Journal of Fusion Energy

Our latest paper, The Princeton Field-Reversed Configuration for Compact Nuclear Fusion Power Plants, is available in the Journal of Fusion Energy, Volume 42, Issue 1, June 2023. This paper is the first released in “The emergence of Private Fusion Enterprises” collection. A view-only version is available for free here.

Our paper gives an overview of the Princeton Field-Reversed Configuration (PFRC) fusion reactor concept and includes the status of development, the proposed path toward a reactor, and the commercialization potential of a PFRC reactor.

The Journal of Fusion Energy features papers examining the development of thermonuclear fusion as a useful power source. It serves as a journal of record for publication of research results in the field. This journal provides a forum for discussion of broader policy and planning issues that play a crucial role in energy fusion programs.

Our Visit to ITER in the South of France

On September 22 Marilyn, Eric, and I visited ITER, the International Tokamak Experimental Reactor in Saint-Paul-lez-Durance, France, about 45 minutes from Aix-en-Provence. We took the TGV from Paris to Aix-en-Provence.

Our tour started with a talk by Akko Maas who gave a great presentation on fusion. He talked about building ITER. The complexity of the project and the large international team both present challenges. He also discussed the advantages of fusion in comparison to wind and solar. He noted that while a fusion reactor would have some waste, both wind and solar, when decommissioned, have waste. He talked about the next phase after ITER called DEMO. ITER is designed to produce 500 MW of fusion power from an input of 50 MW heating power. Akko had a slide listing some of the commercial fusion efforts.

Katya Rauhansalo was our tour guide. She had a couple of assistants. They were all really helpful and very knowledgeable. We discussed many fine points of Tokamak design and fusion in general. Marilyn, Eric, and I were combined with a larger group, due to Covid absences. We chatted with members of the other group about PFRC.

A Tokamak is shown below. The green coils are the center stack coils used to induce a current in the plasma. The gray coils are the poloidal coils. The purple coils are the toroidal coils. In ITER, all coils are superconducting. The green donut in the middle of the D coils is the plasma.

The following image shows the Tokamak building.

The first stop was the manufacturing facility for the poloidal coils. The following video shows a crane in operation in the assembly hall.

The top and bottom coils are small enough that they can be shipped complete. The others need to be manufactured. The following figure shows the cryostat for testing the poloidal coils.

This poster gives the details of the testing.

We then moved through the entrance to the Tokamak. We were able to enter the Tokamak building itself. Here is Eric in front of an installed toroidal superconducting coil.

The coil is shaped like a D which works better than a circular coil.

First plasma was scheduled for 2025 but may be delayed. This was partly due to Covid and partly due to the inevitable technical glitches in such a complex project.

Annie Price Presents, “Nuclear Fusion Powered Titan Aircraft” at IAC 2022 in Paris France

Annie Price, who was an intern at Princeton Satellite Systems during the summer of 2021, presented our paper, “Nuclear Fusion Powered Titan Aircraft,” at session C4,10-3.5 which was the Joint Session on Advanced and Nuclear Power and Propulsion Systems.

There were many interesting papers. One was on generating electric power in the magnetic nozzle of a pulsed fusion engine. Another was on the reliability of nuclear thermal engines. The lead-off paper was on a centrifugal nuclear thermal engine with liquid fission fuel.

Annie’s paper covered the design of a Titan aircraft that can both do hypersonic entry and operate at subsonic speeds. Her design uses a 1 MWe nuclear fusion power plant based on PFRC and six electric propeller engines.

She discussed the aerodynamic design, why Titan is so interesting and how the available power would enable new scientific studies of Titan. Annie also described how a PFRC rocket engine or power plant operates. She included a slide on our latest results.

The paper was well received. She had a couple of good questions after her talk and engaged in interesting discussions after the session. Great job Annie!