Artemis: NASA RFP for Lunar Landers

NASA recently released a request for proposal for a lunar lander with a due date of November 1.

https://www.nasa.gov/feature/fast-track-to-the-moon-nasa-opens-call-for-artemis-lunar-landers

NASA would like a crew to land on the moon by 2024.

We didn’t have time to write a proposal, but here is our design. We propose a single stage vehicle, that can land from and return to a 15 km circular orbit. It uses 2 Blue Origins BE-3U engines that use cryogenic hydrogen and oxygen. An Orion capsule houses the astronauts. The Orion would take astronauts to and from Gateway and to and from the Earth. Lockheed Martin is building the Orion spacecraft. The European Space Agency is building the service module. A separate transport would bring fuel and payload to the lander. In the future, the lander could be refueled from lunar water.

The dimensions are in meters. The Orion is shown below. We purchased the model from https://hum3d.com.

The landing gear were scaled from the Apollo Lunar module.

It is interesting to compare its size with the Apollo Lunar Module. The Artemis is designed to fit into the 10 m SLS fairing. This a fully reusable lunar vehicle that can be refueled. It is designed for a long-term, sustainable, lunar base.

We use two toroidal hydrogen tanks and two spherical oxygen tanks. The cylinder on the outside is the solar array producing 34 kW of power. Of course, numerous details are omitted. We developed this model using our Spacecraft Control Toolbox. The design script will be available in the Spacecraft Control Toolbox Version 2019.1 due in mid-November.

Other elements of the lander were designed for different purposes. The GN&C system is based on our Army Precision Attitude Control System.

Our control system is based on a robotic lander we designed some time ago. We have full C++ code for the control and guidance system.

The architecture for Earth/Moon transportation system is shown below. Eventually, a Direct Fusion Drive freighter would be the main way of moving cargo between Earth orbit, lunar orbit and Gateway. The lander would remain in lunar orbit. Humans would go to the moon using fast orbital transfer, much like during Apollo.

Our next blog post will show how we get from Gateway to and from our 15 km starting orbit. A subsequent post will demonstrate our lunar landing guidance that uses a neural network for navigation based on images of the surface. Using it for landing would require higher resolution images than we have today, but short of building a lunar GPS system, it might be more cost-effective to have a satellite assembling images from low lunar orbit.

We will also update this blog post from time to time. Stay tuned!

FISO Talk: Fusion Drive for Rapid Deep Space Propulsion

On May 29, 2019, Ms. Thomas gave an invited talk to the Future In-Space Operations working group on Direct Fusion Drive (DFD) for deep space propulsion. The slides and talk audio are available from FISO’s online archive here. The group hosts weekly telecon seminars to discuss upcoming technologies and their potential impact on space operations.

Our talk introduces Direct Fusion Drive, explains how it is based on the Princeton Field Reversed Configuration (PFRC), and reviews some potential missions. There are summaries of the key physics points enabling the PFRC and the computational and modeling tools we apply. We conclude with the roadmap to spaceflight, including the supporting technologies that will be required for successful space engines, like lightweight space radiators.

We hope you enjoy this talk on DFD!

Updates for the 2019 Aircraft Control Toolbox

We’ve added some new tools to the Aircraft Control Toolbox for our upcoming 2019 release. The first is a new GUI for creating aircraft models. You import a Wavefront OBJ files and then you point and click to define leading edges, wing areas, engine locations and so forth. This makes it easier to import the geometric data. The GUI is shown below. It illuminates the view that you need to use for a given geometric element in red. The inertia matrix is generated from the mass and the surface geometry.

The new Model Creation GUI

A new simulation function was added to use the data from this GUI. It has a flat Earth aircraft model with a plugins architecture. You can add your own lift, drag and thrust models or use the simple built-in models. It is much simpler than AC.m which is designed to be a comprehensive high-fidelity simulation. We’ve added a new animation GUI to show you the results of your simulations.

We expect 2019.1 to be available in June. You can get a demo with previews of the new functions now.

Interstellar Documentary and New Novel for Fusion Fans

So fusion fans, there are two new ways to see DFD explored as fusion propulsion in the popular media:

  1. The Living Universe documentary series now on Curiosity Stream
  2. The Enceladus Mission” novel now in English from Amazon

The Living Universe is both a feature film for IMAX theaters and now a four-part documentary series. We blogged about our interviews in January and the series is now available on Curiosity Stream, a service dedicated to documentaries! Episode 2,”The Explorers” features a segment on DFD narrated by PSS engineer Stephanie Thomas, in addition to discussing plasma and antimatter propulsion. Here is an article about the series from Broadway World. You need to sign up for an account on Curiosity Stream to watch, which is free for 7 days and then $3 per month.

“The Encedalus Mission” by internationally best-selling hard science fiction author Brandon Q. Morris was originally written in German, and features the DFD as the propulsion technology on a mission to study newly detected life in the Saturn system; an array of six DFDs power the spaceship.  Early reviews are favorable! The book is available in paperback or for Kindle.

Send us a comment and tell us what you think if you watch the show or read the book!

Princeton University Science and Technology Job Fair 2018

Princeton Satellite Systems had a table at the Princeton University Science and Technology Job Fair on Friday, October 12. Many companies attended including the IBM Thomas J. Watson Laboratory, Facebook and Siemens.

We had on display hardware and software that involved the work of interns at PSS. The exhibits were of great interest to the many students who came by our table.

From left to right is an iPhone App for talking with a reconnaissance satellite, a lunar landing simulation on the LCD monitor, parts of an optical navigation system, a Class E RF amplifier, a reaction wheel and a frame for a small satellite. Many students who came by were very knowledgeable about our work.

Here I am talking with one of the students.

It was great event! We look forward to talking with the students when we interview for summer and full time jobs in January.

NASA SBIR Phase III: Low Energy Mission Planning

Hello PSS fans! This is Charles Swanson, recently minted doctor of plasma physics and PSS’s newest employee. It’s my distinct pleasure to discuss our most recent NASA contract: A Phase III SBIR to integrate our Low Energy Mission Planning Toolbox (LEMPT) into NASA’s open source Orbit Determination Toolbox (ODTBX).

Have you read about the kinds of maneuvers conducted by Hiten and AsiaSat 3 that allowed them to reach orbits that would seemingly be outside their Delta-V budgets? Have you always wondered how one goes about planning such maneuvers?

What about the Lunar Gateway from which NASA plans to stage missions to the surface of the Moon in the coming decades? What kinds of clever orbital tricks can we use to get to, from, and about the Moon with the minimum possible fuel?

That’s what LEMPT is for. LEMPT is a suite of tools written in MATLAB for the planning of low energy missions, the kinds of missions that loop way outside the target orbit of the Moon and deep into chaotic regions of the gravitational landscape. Here’s an example:

This LEO to Lunar Orbit mission takes just one impulsive burn of 2.8 km/s. It loops way outside the Moon and back in for a ballistic capture.

To go from LEO to a low lunar orbit usually takes almost 4 km/s of Delta-V. The maneuver depicted takes only 2.8 km/s. This is the kind of planning capability that NASA would like for their ODTBX. From now until December, we’ll be integrating the LEMPT into ODTBX, where it will help NASA mission planners evaluate all of their options along the trade-off of mission time and Delta-V.

The orbit above doesn’t look anything like the Keplerian ellipse that we know and love. That’s because this is a four-body system, with the Sun, Earth, Moon, and spacecraft all interacting gravitationally. Even the three-body system is famously chaotic: here are two examples of the kind of distinctly weird-looking orbits you can get:

This is a periodic orbit in the Sun-Earth-Spacecraft system. Periodic orbits are rare in such systems.

This orbit starts with only 0.01% more velocity than the periodic orbit but escapes the Earth entirely. This is an example of chaos.

It’s this chaos that the LEMPT leverages to plan exotic and efficient maneuvers.

Phase II NASA STTR on superconducting magnets selected!

We are pleased to announce that our Phase II STTR proposal, “Superconducting Coils for Small Nuclear Fusion Rocket Engines,” was one of 20 selected for award by NASA in this year’s round! The full list of winners is posted on NASA’s website.

Our briefing chart prepared as part of the proposal is shown below:Briefing chart

We will be building a testbed with a split-pair superconducting coil (two windings with a gap between them) and performing experiments to assess the impact of operating the magnets in the vicinity of the FRC plasma. Applications of the technology go beyond fusion reactors, for example science payloads and high-performance motors for hybrid electric aircraft.