Creating attitude profiles just got easier! Satellites typically have multiple antennas and sensors that must be pointed in different directions at various times. We often want to point a sensor payload or a directional antenna at a certain location on Earth, while keeping the solar panels aligned with the sun and aiming the star camera away from bright areas of the sky. The group of new attitude profile functions in SCT v11 allow high-level directives to be defined, and facilitate the automatic computation of an attitude profile that meets the target alignment objectives while satisfying all pointing constraints. Detailed time-history plots and 3D visualization with playback enable you to explore and understand the attitude profile in depth.
The 2D plot below shows a time history of the rotation angle around the primary body axis. The primary body axis is aligned with the primary target. We can then rotate about this axis to align a secondary body axis as closely as possible with a secondary target. At the same, we have one or more pointing constraints which impose time-varying bounds on the rotation angle. The dark gray regions illustrate how these bounds change over time.
The 3D view below shows the orbital path (cyan) of the satellite about the Earth, with a CAD model at the current orbit location in the center of the figure. The sun vector is shown (yellow) and the Earth lighting is based on the sun location. The primary alignment vector (green) is directed towards a coordinate on the Earth, and the secondary alignment is pointed in the orbit-normal direction. Constraint directions are shown in red with angular sweeps to show their size. The sensor cone is a star camera that has to keep the sun, Earth and moon out of its field of view.