A new paper, “Analysis and Mitigation of Pulse-Pile-Up Artifacts in Plasma
Pulse-Height X-ray Spectra” by Taosif Ahsan and our team has been published open-access in MDPI Plasma. It describes the implementation of an algorithm, the two-photon trapezoidal uncorrelated-pulse model, to improve analysis of x-ray spectra emitted from PFRC-2 plasma. This model was developed to reduce artifacts in x-ray spectra caused by pulse pile-up, PPU (the phenomenon where x-ray photons are recorded nearly simultaneously so that only one x-ray photon is recorded with a combined energy), and diagnose the tail region to see if it is a pulse-pile-up artifact or if it has physical origins.


Experiments on the Princeton Field-Reversed-Configuration (PFRC-2) device explore nearly pure, ca. 99%, partially ionized, warm hydrogen plasmas. For these, great interest lies in the tails of the X-ray spectrum. The tail region is important as an electron temperature in the PFRC can be estimated by fitting a Maxwellian distribution. Small tails of high-energy electrons in the energy distribution (EED), even comprising less than 1% of the plasma density, can have large effects on the resistivity, stability, and reaction rates of the plasma.
This paper is a step toward understanding how PPU affects the tail region of spectra for detector-formed trapezoidal pulses. Here we focus on relatively low count rate (≤0.1/deadtime) spectra where primarily only two-photon pile-up needs to be considered. Extension of this work to multi-photon pile-up will be necessary to develop an analytical tool to diagnose and mitigate pile-up effects in the tail regions of higher count-rate spectra.