In October of 1997, the Cassini spacecraft launched on a mission to explore the depths of the Saturnian system. After traveling over 3.5 billion km, the orbiter set out to discover more about the composition and features of Saturn, study its rings and satellites, and investigate the magnetic environment. Flash forward to 2013, Cassini is in the midst of it’s second extended mission! Over the past decade, we have received countless images from this amazing spacecraft including shots of the spectacular icy plume geysers from the Saturnian moon Enceladus.
Image Source: NASA
http://photojournal.jpl.nasa.gov/catalog/PIA11688
This tiny moon is creating a LOT of excitement as it is thought to have the greatest potential for extraterrestrial life in our Solar System. A robotic lander may explore Enceladus in the future.
Using our Spacecraft Control Toolbox (SCT), we have created a simulation of the soft landing of a small exploratory craft. Starting in a 5 km circular Enceladus equatorial orbit, the lander tracks a minimum time descent profile. An altimeter monitors the local vertical distance the spacecraft needs to travel before touchdown, and a three axis PID controller is used to orient the spacecraft so that the thrusters align with the prescribed thrust direction.
When the spacecraft approaches the surface of Enceladus, we switch to a landing mode in which the vehicle assumes a vertical landing orientation and thrust is applied in the local vertical direction, proportional to the distance to touchdown. This is all done using functions readily available in SCT! Next stop: Enceladus! Who’s on board?
Check out what our MATLAB toolboxes have to offer!
http://test.psatellite.com/sct/index.php