Writing about Fusion

Hi! I’m Paige, and I’m an undergraduate at Princeton interested in physics and science communications. This January, I got to work as an intern here at Princeton Satellite Systems. These past few weeks, I’ve been writing about the fusion-related projects PSS is working on, such as their Princeton Field-Reversed Configuration (PFRC) fusion reactor concept and plans for a space propulsion engine.

My first task was to write a four-page report on the PFRC, including its design, market demand, and development timeline. I knew very little about fusion coming into this internship, so first I had to learn all I could about the process that powers the sun and has the potential to supply the earth with clean, practically limitless energy.

Various types of fusion reactors are under development by companies and coalitions all over the world; they differ in the reactors they use and their methods of confining and heating plasma. ITER, for instance, is an example of a tokamak under construction in France; it uses superconducting magnets to confine plasma so that the reaction of tritium and deuterium can occur. 

The PFRC, currently in the second stage of experiments at the Princeton Plasma Physics Laboratory, uses radio frequency waves to create a rotating magnetic field that spins and heats the plasma inside, which is contained by closed magnetic field lines in a field-reversed configuration resulting from the opposition of a background solenoidal magnetic field to the field created by the rotating plasma current. The fusion reaction within the PFRC is that of helium-3 and deuterium, which offers multiple advantages over reactions involving tritium. Compared with other fusion reactors, the PFRC is incredibly compact.  It will be about the size of a minivan, 1/1000th the size of ITER; this compactness makes it ideal for portable or remote applications.

After learning about the design and market applications of the PFRC, I created a four page brochure about PFRC, writing for a general audience. I included the basics of the reactor design and its advantages over other reactors, as well as market estimates and the research and development timeline. I went on to write four page brochures about PSS’s Direct Fusion Drive engine, which will use PFRC technology for space propulsion purposes, and GAMOW, the program under which PSS is collaborating on developing various power electronics for fusion reactors.

These past few weeks have been quite informative to me, and I realized how much I loved writing about science and technology! I learned all about fusion, and I especially loved learning the details of the PFRC reactor design. To summarize the design, research, and development of the PFRC and other technologies within four page flyers, I had to learn how to write about technology and research comprehensively and engagingly for a general audience, which improved my science communication skills.

The Space Show appearance

It was my pleasure to appear on David Livingston’s “The Space Show” radio program last night, now available as a podcast:

https://www.thespaceshow.com/show/24-aug-2021/broadcast-3744-stephanie-thomas

People from all over the country called and emailed in their questions about fusion and fusion-propelled spaceflight, and we had a great discussion! David has been running this educational program for 20 years and there are almost 4000 archived episodes covering a wide range of space topics. Author David Brin, whom I met during my NASA NIAC fellowship, is going to be on next week!

So have listen and add to the conversation on The Space Show website!

Direct Fusion Drive Mission to Titan

Titan, a moon of Saturn, is of great interest to space scientists. Titan is the only moon with a dense atmosphere and clouds and with liquids on its surface. Universe Today reports on a masters thesis that proposes a mission using Direct Fusion Drive to put an orbiter around the moon. The thesis, “Trajectory design for a Titan mission using the Direct Fusion Drive,” is by Marco Gajeri under the direction of Professor Sabrina Corpino of the Politecnio di Torino and Professor Roman Kezerashvili of the City University of New York.

The thesis gives an excellent overview of nuclear fusion technology and space propulsion. The author then goes on to do trajectory analysis for the Titan mission using STK. He presents three different mission strategies using Direct Fusion Drive. He includes all of the orbital maneuvering needed to get into a Titan orbit. His mission designs would get a spacecraft to Titan in two years.

FISO Talk: Fusion Drive for Rapid Deep Space Propulsion

On May 29, 2019, Ms. Thomas gave an invited talk to the Future In-Space Operations working group on Direct Fusion Drive (DFD) for deep space propulsion. The slides and talk audio are available from FISO’s online archive here. The group hosts weekly telecon seminars to discuss upcoming technologies and their potential impact on space operations.

Our talk introduces Direct Fusion Drive, explains how it is based on the Princeton Field Reversed Configuration (PFRC), and reviews some potential missions. There are summaries of the key physics points enabling the PFRC and the computational and modeling tools we apply. We conclude with the roadmap to spaceflight, including the supporting technologies that will be required for successful space engines, like lightweight space radiators.

We hope you enjoy this talk on DFD!

Direct Fusion Drive in the News

Here are some links to recent articles on Direct Fusion Drive. From the Federal Laboratory Consortium:

https://www.federallabs.org/successes/success-stories/princeton-plasma-physics-laboratory-licenses-fusion-technology-that-could

From Next Big Future blog:

From Aerospace Testing International:

Job Opening for a Plasma Physicist

We are looking for a plasma physicist to join our staff in support our new ARPA-E contract on the Princeton Field Reversed Configuration (PFRC) experiment.

Candidates should be interested in both theoretical and experimental work in plasma physics related to nuclear fusion power generation. Familiarity with low- and high-temperature plasma diagnostics is desirable. Background on any magnetic fusion device is also desirable. The position includes:

  • Help run experiments on the PFRC-2 (located at the Princeton Plasma Physics Laboratory) and analyze data.
  • Analytical and numerical work, including MHD simulations and PiC simulations.
  • Numerical modeling of plasmas.
  • Work in other areas at PSS including control, estimation, machine learning and orbit dynamics.
  • Programming in MATLAB, Python and C/C++.
  • Write proposals and come up with new topics for proposals including SBIR and STTR proposals.

Requirements include:

  • Ph.D in plasma physics (may be a recent or 2019 grad)
  • Must be a US citizen.

If you are interested, send your resumé to info@psatellite.com

Interstellar Documentary and New Novel for Fusion Fans

So fusion fans, there are two new ways to see DFD explored as fusion propulsion in the popular media:

  1. The Living Universe documentary series now on Curiosity Stream
  2. The Enceladus Mission” novel now in English from Amazon

The Living Universe is both a feature film for IMAX theaters and now a four-part documentary series. We blogged about our interviews in January and the series is now available on Curiosity Stream, a service dedicated to documentaries! Episode 2,”The Explorers” features a segment on DFD narrated by PSS engineer Stephanie Thomas, in addition to discussing plasma and antimatter propulsion. Here is an article about the series from Broadway World. You need to sign up for an account on Curiosity Stream to watch, which is free for 7 days and then $3 per month.

“The Encedalus Mission” by internationally best-selling hard science fiction author Brandon Q. Morris was originally written in German, and features the DFD as the propulsion technology on a mission to study newly detected life in the Saturn system; an array of six DFDs power the spaceship.  Early reviews are favorable! The book is available in paperback or for Kindle.

Send us a comment and tell us what you think if you watch the show or read the book!

Phase II NASA STTR on superconducting magnets selected!

We are pleased to announce that our Phase II STTR proposal, “Superconducting Coils for Small Nuclear Fusion Rocket Engines,” was one of 20 selected for award by NASA in this year’s round! The full list of winners is posted on NASA’s website.

Our briefing chart prepared as part of the proposal is shown below:Briefing chart

We will be building a testbed with a split-pair superconducting coil (two windings with a gap between them) and performing experiments to assess the impact of operating the magnets in the vicinity of the FRC plasma. Applications of the technology go beyond fusion reactors, for example science payloads and high-performance motors for hybrid electric aircraft.