PSS Advances in Superconducting Motors for Aircraft

PSS just finished up a research contract for NASA in which we discovered some surprising and useful ways in which Low Temperature Superconductors (LTS) may be more suitable than High Temperature Superconductors (HTS) for making light, efficient electric motors.

In short, they’re cheaper. They’re much, much easier to design, manufacture, and use. Unlike HTS, it’s easy to make LTS electrical joints that are just as superconducting as the coils. LTS experience less heating when their internal current is changed. Crucially, you can make a “persistent switch” in which an LTS magnet is charged once and the current is trapped in the coil, persisting without the need to constantly supply current. Our LTS of choice is NbTi, the “workhorse” of the LTS family.

Interested in knowing more? Then read on!

Electric Aircraft

There are several big pushes toward electric aircraft. Air travel accounts for 2.5% of our carbon emissions. So what’s preventing us from electrifying aircraft like we did with cars? The problem is weight. An extra pound of motor or batteries costs much more in an aircraft than it does in a car.

That being said, there are dozens of research groups, companies, and agencies working on hybrid electric and fully electric aircraft. There are even serious advantages to having the freedom to place propulsion units (motors rather than jet turbines) wherever you want within the aircraft, concepts called Boundary Layer Ingestion and Distributed Electric Propulsion. The aerodynamics is complicated, but the gist is that you can get huge emissions savings even if you’re still using jet fuel and turbines, if those turbines are powering lots of little motors rather than one big jet engine.

Superconducting motors

As we said earlier, all parts of the propulsion powertrain need to be lightweight in order to make a practical electric aircraft. For decades now, superconductivity has been known as a phenomenon with the potential to decrease the weight and increase the efficiency of motors. The idea goes back to the 1960s, with several experimental LTS rotors being tested in the 1970s and 1980s before the programs ended.

But what happened in the 1980s that shifted focus away from LTS motors? The answer is the discovery of HTS. On paper, HTS looks wonderful. It is superconducting at more achievable temperatures, ~100 K versus ~8 K for LTS. It can create magnetic fields much higher than LTS. Plus, it can carry much more current than LTS, meaning the same motor can weigh significantly less if made of HTS.

Yet despite research programs going back to the 1980s and continuing today, there are still no HTS motors on the market. Why is that?

The LTS difference

Our LTS magnet. This magnet was purchased from SSI for a separate NASA contract. This magnet is operated in persistent mode, in which the magnet does not need an external power supply once it has been charged.

It turns out HTS is expensive and extremely hard to use. A magnet made of HTS would cost 20 times more than one made of LTS. HTS is weak, and when it’s under strain it can’t carry as much current. It can’t be flexed in one direction. To join two cables of HTS together into one superconducting piece, you have to grow more superconductor between them; you can’t just snap them together like extension cords.

On the other hand, LTS magnets have matured since the 1980s. Most hospitals now have an LTS magnet in the form of their MRI machine. Thousands of tons of LTS are produced yearly. LTS is cheaper, stronger, more flexible, and easier to work with. Its so-called AC losses (heating that occurs when the current is changed) are lower. Two LTS cables can be joined together to make one long LTS cable.

This latter property allows the so-called persistent mode of LTS magnets. In this mode, no external current is required to power the magnet. You charge the magnet up once, then you can disconnect it and walk away. Our LTS magnet vendor, Superconducting Systems, Inc. (SSI) of Billerica MA, has magnets that have sat persistently charged for decades.

How this affects a motor design

As part of our Phase I NASA SBIR, we designed a motor using LTS. The motor design targets small aircraft like Cessna Denali or regional airliners like Beechcraft 1900. The motor’s output power is 1 MW. The total target system weight is 100 kg. The target efficiency is 99.5%.

One of the challenges of using superconducting materials is keeping them cold. Because of the low AC losses and persistent mode of LTS, we were able to cut the heat leak down from dozens of Watts to less than 1 Watt. We were able to completely eliminate the charging subsystem and cryocooler of HTS designs. We have identified four innovative technologies that are enabled by and instrumental to the use of LTS in motors. We will be developing this technology in the coming years.

One of our innovations came from the significantly reduced heat leak into the cold rotor. Rather than use heavy, expensive cryocoolers to cool the rotor, the design suddenly came into the realm of Liquid Helium (LHe) reservoirs. Our SSI partners liken it to the difference between a refrigerator and a cooler. Use the refrigerator (cryocooler) when keeping food cold for weeks or months, but use a cooler (LHe) when making a day trip to the beach.

What’s next?

The journey of the LTS motor has just begun. Work continues at PSS. Contact us for more information or partnering opportunities.

Watch this space! Some day soon, perhaps sooner than you think, you could be flying across the country in an aircraft as renewably powered as your electric car.

SunStation in October

The following image shows SunStation in operation on a bright October day! The load for the day was 12.4 kWh. This includes charging a Nissan Leaf and a Toyota Prius Plugin-in. The total power generated was 40.3 kWh and 21.4 kWh was sold to the grid. As you can see, the installation is much more than carbon neutral with regard to electrical power. It has a gas heating system so is not completely carbon neutral.

OPTICSRE

The orange line is the state of charge for the batteries. The 14.4 kWh of batteries is enough to keep the home running, charge the Prius fully and the Leaf partially, when the grid is down. The system automatically disconnects itself from the grid when there is an outage.

The house itself is fairly energy efficient with mostly LED lights and a few CFLs. The heating system is high efficiency with a 60 W fan that operates most of the time. The house is air-tight and has a whole house air exchange system that operates continuously. The refrigerator is 10 years old and the washer and dryer are less than 10 years old. As you can see, the typical load is 500 W except when the cars are charging. The efficiency could be further improved by installing a state-of-the-art central air system and replacing the refrigerator.

The Nissan Leaf is 100% electric. On a normal day the Prius operates on battery stored energy about 80% of the time. It visits the gas station once every 3 weeks or so.

Besides saving money on power, the system produces 7 Solar Renewable Energy Credits (SRECs) yearly. At current SREC prices, that is about $1500 a year in revenue. The homeowners own the system so all the revenue goes directly to them.

Nuclear Fusion Power

Nuclear fusion power research started in earnest in the 1950’s. Initially, researchers thought that the work needed to produce a fusion power plant would be comparable to that needed to produce the first fission plants. That turned out to be unrealistic as the physics was not well understood and plasma confinement was much more difficult than expected. Many of the first machines were Stellarators. One of the first was Lyman Spitzer’s Stellarator at the Princeton Plasma Physics Laboratory (PPPL).

Many machine geometries were tried such as mirrors and pinches. In the 1960’s the Soviets disclosed success with the Tokamak (тороидальная камера с аксиальным магнитным полем). Unlike the Stellarators, Tokamaks have a circulating current that helps confine the plasma. Since then Tokamaks have been the focus of fusion power research. The Princeton Plasma Physics Laboratory produced 10.7 MW of fusion power in 1994 in the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET) produced 22 MW of fusion power in 1997. In 1998 the Japanese JT-60 produced an equivalent power gain of 1.25, that is 1.25 MW of fusion power for 1 MW of input power. The next step in Tokamaks is the International Thermonuclear Experimental Reactor (ITER).

ITER is a large-scale scientific experiment to demonstrate that it is possible to produce commercial energy from fusion. Its goal is to produce a fusion power gain of 10 at a power level of 500 MW and to generate this power for 500 seconds. Operation with tritium is scheduled to begin in 2027. The next step after ITER is DEMO which will be a prototype of a practical fusion power plant. Demo will produce between 2 and 4 GW of thermal power and have a power gain of 25. After DEMO the next machine will be PROTO which will be a fully commercial power plant. PROTO is expected to built after 2050.

In parallel with ITER many other magnetic confinement devices are under test. These include the U.S. National Spherical Tokamak (NSTX) and the Princeton Field Reversed Configuration (on which DFD is based) both at PPPL. Many new Stellarators are under test including the Wendelstein 7-X in Germany, the Helically Symmetric eXperiment (HSX) in the U.S. and the Large Helical Device in Japan. These devices may result in more economical fusion machines than Tokamaks. The field of fusion researchis very vibrant and work around the world is serving to improve our knowledge of plasma physics and the help solve the engineering problems. For example, recently a new method for reducing instabilities was developed at JET.

The first commercial reactors will likely use deuterium and lithium as fuels. The reaction (used in TFTR, JET and ITER) is deuterium and tritium but in a commercial plant the tritium would be produced from the neutron bombardment of lithium as the D-T reaction produces most of its energy in energetic neutrons. Advanced fuels like deuterium helium 3 and boron proton that produce fewer neutrons are also under investigation. Deuterium and helium 3 would power the DFD. The boron-proton reaction would power TriAlpha’s reactor.

Get to Mars Quickly with the Direct Fusion Drive

Do you really want to spend the next 501 days locked in a tiny room with your spouse, hurtling toward the Red Planet just to take a few snap shots from 100 miles away? What about competing with 10,000  people to build the first Martian colony on a “Big Brother”-style reality TV series?

What if you could just go for a few months to do some research?  What if you could not only get there quickly but without any of the radiation dangers from fission or even from burning deuterium-tritium fuels?

The Direct Fusion Drive (DFD) is a novel system that we have been developing with the Princeton Plasma Physics Lab, and two weeks ago we filed a thrust-augmentation patent for the DFD.  Propellant gasses such as deuterium and helium can be pumped into a gas box and weakly ionized. These flow out along the magnetic field lines of the scrape off layer and pass around the closed-field region of the field-reversed configuration.  Fusion products fly out into the scrape off layer at 25 millions meters a second and collide with the propellant, heating it up (and therefore speeding it up), and then everything gets ejected through the magnetic nozzle.

If propellant wasn’t added, then the fusion products would give the spacecraft a velocity of around 25 million meters per second but would provide only a fraction of a Newton.  By adding propellant, the exhaust velocity drops directly proportional to the thrust.  An exhaust velocity of a few dozen km per second is sufficient for many missions and therefore tens and even hundreds of newtons of thrust can be achieved.