Final Titan Aircraft Paper Published in Acta Astronautica

The final version of our paper, “Nuclear Fusion Powered Titan Aircraft,” by Mr. Michael Paluszek, Ms. Annie Price, Ms. Zoe Koniaris, Dr. Christopher Galea, Ms. Stephanie Thomas, Dr. Samuel Cohen, and Ms. Rachel Stutz is now available, open access, on the Acta Astronautica website. As described in our earlier post, the paper discusses a mission to Titan using the Direct Fusion Drive on the transfer vehicle, and a Princeton Field Reversed Configuration reactor to power an aircraft, that could fly around Titan for years. The reactor allows for high-power instruments, some of which were first proposed for the NASA Jupiter Icy Moon Orbiter Mission. The paper was first presented at IAC 2022 in Paris.

Two key figures were updated from the preprint version of the paper – Figure 11 and Figure 12, showing the power flow and mass breakdown of the PFRC for the electric aircraft. The earlier figures were from a larger version of the engine. The final engine design produces 0.5 MWe and has a mass of 1006 kg. This is now consistent with the system masses presented in Table 6. Vehicle Power and Payloads.

Universe Today has published an article about our mission study, “What if Titan Dragonfly had a fusion engine?”

PSS appears on the Space Business Podcast to talk about nuclear fusion propulsion

Mike Paluszek and I appear on the newest episode of Space Business Podcast to talk about nuclear fusion propulsion, Direct Fusion Drive, and the Princeton Field-Reversed Configuration (PFRC) concept!

We had a great conversation with the host of this podcast, Rafael Roettgen, who asked us thoughtful questions. In this episode, we discuss topics such as: the future of space propulsion, the history and benefits of field-reversed configurations and how they compare with other fusion reactor concepts, mass and power budget considerations of a fusion rocket, and the road ahead for research and development to get us to a prototype for space. We additionally talk about terrestrial (on earth) applications of the PFRC concept as a globally-deployable power plant for remote areas and look forward to even more futuristic space concepts that could follow after the PFRC.

You can access this episode on podcast platforms including Apple Podcasts and Spotify as well as directly on their website. Enjoy!

Our Titan Mission Paper preprint is now online in Acta Astronautica

Our IAC paper on a fusion-powered Titan mission is now available in preprint on Acta Astronautica online, with the final version to come soon! Our mission concept utilizes two PFRC reactors: one configured as a Direct Fusion Drive rocket for the journey to Titan, and a second configured as a power source for the electric aircraft that will survey Titan. The paper includes a detailed design of the aircraft and analysis of optimal entry into the atmosphere and landing on the moon’s surface.

https://doi.org/10.1016/j.actaastro.2023.04.029

Fusion-propelled transfer vehicle shown in orbit around Titan. The transfer vehicle would serve as an orbital science platform and communications relay to Earth. The 2.4 MW fusion reactor provides 1.4 MW of thrust power and 100 kW of electric power.
Fusion-powered electric aircraft for Titan science exploration. The aircraft has six ducted fan engines. The onboard reactor provides 500 kW of electric power.

Crowdfunding for fusion development closing at the end of April

Our crowdfunding opportunity at is scheduled to close at the end of the month. We’ve raised over $100K so far to support fusion development and specifically, the PFRC-2 experiment at Princeton Plasma Physics Laboratory as we close in on our ion heating milestone. This is the last two weeks to invest in our raise on SpacedVentures!

Deal closes in 14 days

ARPA-E Energy Innovation Summit 2023

At the end of March, we attended the ARPA-E Energy Innovation Summit in National Harbor, MD. At the Summit we presented our work on power electronics tailored for fusion systems under an ARPA-E GAMOW grant. It was a great experience to network with many other awardees of ARPA-E grants working on innovative energy projects and learn about the power electronics needs of potential customers so we could design our boards to these specifications. Shown below is our Summit booth which was run by PSS Mike Paluszek and me.

Our booth contains prototype circuit boards developed by PSS and our collaborators at Princeton University (the Princeton Power Electronics Research Lab), along with flyers and other learning materials. The posters mounted behind us describe the work done by us and our collaborators: the Princeton Power Electronics Research Lab, UnitedSiC (now Qorvo), and the National Renewable Energy Laboratory (NREL).

Breakout sessions included panels on: future plans for inertial fusion energy, nuclear & materials, rethinking the nuclear waste challenge, and scaling up innovations for impact in the private sector with the ARPA-E SCALEUP program. Dr. Neil deGrasse Tyson gave a talk at the Summit!

The pdfs of the trifold and posters at our Summit booth are shown below. If you have any power electronics requirements for your systems, please contact us at info@princetonfusionsystems.com!

PFRC Article in the Journal of Fusion Energy

Our latest paper, The Princeton Field-Reversed Configuration for Compact Nuclear Fusion Power Plants, is available in the Journal of Fusion Energy, Volume 42, Issue 1, June 2023. This paper is the first released in “The emergence of Private Fusion Enterprises” collection. A view-only version is available for free here.

Our paper gives an overview of the Princeton Field-Reversed Configuration (PFRC) fusion reactor concept and includes the status of development, the proposed path toward a reactor, and the commercialization potential of a PFRC reactor.

The Journal of Fusion Energy features papers examining the development of thermonuclear fusion as a useful power source. It serves as a journal of record for publication of research results in the field. This journal provides a forum for discussion of broader policy and planning issues that play a crucial role in energy fusion programs.

Producing Terrestrial Power with Helium-3 from Uranus using PFRC/DFD

Our latest paper on DFD applications, “A Fusion-Propelled Transportation System to Produce
Terrestrial Power Using Helium-3 From Uranus”, is now available from AIAA. This paper was part of the Future Flight Propulsion track and AIAA SciTech 2023. For those with AIAA membership, there is a video recording of the presentation as well! Download the paper here.

Our goal with this paper is to create a framework within which we can study the potential cost of electricity produced on Earth using helium-3 mined from Uranus. The scarcity of terrestrial helium-3, along with the radioactivity of methods to breed it, lead to extraterrestrial sources being considered as a means to enable clean helium-3 fusion for grid-scale electricity on Earth.

This paper builds on the work of Bryan Palaszewski who has published numerous papers on mining the atmospheres of the outer planets. Palaszewski’s work assumed fission-based power and propulsion systems, with a much lower (worse) specific power than we anticipate from a PFRC-based Direct Fusion Drive. We consider both transport and mining vehicles that are instead fusion-powered, including a fusion ramjet. This ramjet may be able to be both the mining vehicle and the orbital transfer vehicle to bring the refined helium-3 to the interplanetary transport,

Components of a conceptual fusion-propelled and -powered Uranus atmospheric mining infrastructure

The results allow us to estimate levelized cost of electricity, LCOE, for the electricity produced on Earth as a function of assumed cost of the fusion transports and mining system, cost of the PFRC reactors, amount of helium-3 stored on each transport and numbers of trips per year, etc. You can learn more about LCOE from the NREL website. Uranus is likely the most economical outer planet for mining due to its lower gravity and radiation environment and high concentration of helium in its atmosphere, about 15%. We find that with our set of assumptions, the resulting cost of electricity could potentially be competitive with wind and solar.

Future work will include analysis of the fusion ramjet trajectories between mining and transfer altitudes, and research into sizing a mining payload using membranes and adsorption to separate the helium-3 from the helium, rather than depend on heavy cryogenic techniques.

NIF: Net (Scientific) Gain Achieved in Inertial Fusion! What is the impact on PFRC?

The internet was abuzz last week with the news that the National Ignition Facility had achieved that elusive goal: a fusion experiment that achieved net (scientific) energy gain. This facility, which uses 192 lasers to compress a peppercorn-sized pellet of deuterium and tritium, released 3 MJ of energy from 2 MJ of input heat.

We have to use the caveat that this is “scientific” gain because it does not account for the total amount of energy needed to make the laser pulse. As a matter of fact, the lasers require 400 MJ to make those 2 MJ that reach the plasma. If we account for this energy, we can call it the “wall plug” gain or “engineering” gain since it includes all the components needed. This gain for laser-induced fusion is still less than 1%, because the lasers are very inefficient.

Nonetheless, this is great news for all fusion researchers. Since we often get asked: Has anyone achieved net (scientific) gain yet? Now we can say: Yes! It is physically possible to release net energy from a fusing plasma, to get more energy output than direct energy input. This advance has been achieved through various new technology: machine learning to select the best fuel pellets, wringing more energy from the lasers, more exact control over the laser focusing. Modern technology, especially computing for predicting plasma behavior, explains why progress in fusion energy development is now accelerating.

Tokamaks have also come close to net gain, and in fact the JT-60 tokamak achieved conditions that could have produced net gain, if it had used tritium [1].

The reason JT-60 did not use tritium in those shots is very relevant to our fusion approach, the PFRC. Tritium is radioactive, rare, expensive to handle, and releases damaging neutrons during fusion. Tritium is also part of the easiest fusion reaction to achieve in terms of plasma temperature, the deuterium-tritium reaction. It makes sense for fusion experiments to use such a reaction, but this reaction presents many difficulties to a future working power reactor.

The PFRC is being designed to burn deuterium with helium-3, rather than with tritium, precisely to make the engineering of a reactor easier. The deuterium-helium-3 reaction releases no neutrons directly. Some deuterium will fuse with other deuterium to produce neutrons and tritium, but the PFRC is small enough easily expel tritium ash. This results in orders of magnitude less neutrons per square meter reaching the walls. Once we have scientific gain, like the NIF has now demonstrated for laser fusion, we have an easier path to engineering gain — that is, net electricity.

So while the laser fusion milestone doesn’t directly impact our work on the PFRC, it is important to the field. We will continue to follow the progress of all our peers as we work to achieve higher plasma temperatures in our own experiments!

[1] T. Fujita, et al. “High performance experiments in JT-60U reversed shear discharges,” Nuclear Fusion 39 1627 (1999). DOI: 10.1088/0029-5515/39/11Y/302

APS Division of Plasma Physics 2022 Meeting in Spokane, Washington

Last week, I attended the American Physical Society Division of Plasma Physics (APS DPP) 2022 Meeting. As the name entails, it was a meeting full of plasma physics with applications ranging from astrophysics to nuclear fusion energy. There were many great talks and posters on plasma physics research by companies, national labs, and universities, and one could sense an overall feeling of excitement around fusion shared by many attendees.

I had a pleasant time in Spokane, WA. Pictures from outside of the conference center (with many conference attendees standing nearby), including the nice view from the conference center, are shown below.

I presented a talk on the Princeton Field-Reversed Configuration (PFRC) fusion reactor concept, and how we can leverage public-private partnerships for its development. The talk discussed technical details of the PFRC, including the past modeling and experiments, current investigation, and future research & development plans. The talk also described the markets and commercialization opportunities for this reactor concept, including disaster relief and asteroid deflection. Here I am at the podium speaking.

I also presented a poster on our recent investigations of x-ray diagnostics on the PFRC-2 experiment for electron temperature and density measurements, which was mounted on a poster board in the conference center. Many people came by to ask about my poster as well as about general PFRC questions, which kept me talking for the majority of the 3-hour poster block session! It was great to discuss ideas and results with many scientists and students at the conference.

Dr. Sangeeta Vinoth also had a poster at this conference on collisional-radiative model developments to extract electron temperature measurements from spectroscopy, which she presented virtually. APS DPP 2022 was an exciting conference to attend, and I’m looking forward to seeing updates from presenters at this conference. That also includes us, as we have more research and investigation to do — stay tuned!

Applying our Toolboxes to ITER and DEMO fusion reactors

Last week, PSS Mike Paluszek visited ITER, the international fusion research experiment under construction in France. In light of Mike’s recent visit to ITER, we wanted to showcase an application of our tokamak Fusion Reactor Design function to the design of ITER. This function is part of the Fusion Energy Toolbox for MATLAB, a toolbox that includes a variety of physics and engineering tools for designing fusion reactors and studying plasma physics. We will also compute design parameters for ITER’s successor, the DEMOnstration power plant (DEMO), a fusion reactor currently in the design phase which is planned to achieve net electricity output.

We first apply the Fusion Reactor Design function to ITER. Note that ITER is expected to produce 500 Megawatts (500 MW) of fusion power, but this will not be converted into electric power, the power that goes into the electrical grid. DEMO, on the other hand, is planned to produce 500 MW of electric power from 2000 MW of fusion power. The Fusion Reactor Design function asks for the net electric power output of the reactor, P_E, as an input, so we generate a value for P_E for ITER by using the same ratio of electric-to-fusion power as in DEMO, giving us a P_E of 125 MW for ITER. The inputs used for the ITER design are shown below (see references [1,2]), where we use a data structure “d_ITER”:

d_ITER.a     = 2; % plasma minor radius (m)
d_ITER.B_max = 13; % maximum magnetic field at the coils (T)
d_ITER.P_E   = 125; % electric power output of the reactor (MW)
d_ITER.P_W   = 0.57; % neutron wall loading (MW/m^2)
d_ITER.H     = 1; % H-mode enhancement factor
d_ITER.consts.eta_T = 0.25; % thermal conversion efficiency
d_ITER.consts.T_bar = 8; % average ion temperature (keV)
d_ITER.consts.k     = 1.7; % plasma elongation
d_ITER.consts.f_RP  = 0.25; % recirculating power fraction

The first five inputs were described in our original post on the Fusion Reactor Design function. The function can be called to perform a parameter sweep over any of these inputs. We also specify values for some constants: the thermal conversion efficiency ‘eta_T’, the average ion temperature ‘T_bar’, the plasma elongation ‘k’, which is a measure of how elliptical the plasma cross-section is, and the recirculating power fraction ‘f_RP’. We can perform a parameter sweep over the minor radius (from a = 1.8 meters to a = 2.2 meters, with 100 points in between) and display a table of results simply with two lines of code:

d_ITER = FusionReactorDesign(d_ITER,'a',1.8,2.2,100); % run function
d_ITER.parameters % show table of resulting parameters

Looking at the results table from d_ITER.parameters, we see overall agreement with parameters for ITER [1,2]. The plasma major radius (essentially the tokamak radius) R_0 output is about 5 m, which is in the ballpark of the 6.2 m radius of ITER design, and the magnetic field at R_0 (on plasma axis) output is 4.8 Tesla, close to the ITER design value of 5.3 Tesla. The plasma current output is 17.5 MegaAmps, which is also close to ITER’s design of 15 MegaAmps.

The Fusion Reactor Design function also outputs plots that show whether or not the reactor satisfies key operational constraints for tokamaks, see the figure below. The first three curves check various constraints to ensure the plasma is stable, which we see are met as they are located in the unshaded region (though the green curve is marginally close to the constraint boundary). The blue curve’s position deep into the shaded region indicates that the reactor is far from producing enough electric current to sustain itself. The designers of ITER anticipated this, which is why ITER will additionally use a pulsed inductive current and test a combination of other techniques to drive the plasma current.

We now consider DEMO, which is in the design phase with the goal of net electrical power output. Similarly to running the ITER case, we set up a data structure (now called ‘d_DEMO’) with known DEMO input parameters [3] and perform a parameter sweep over the minor radius ranging from a = 2.7 meters to a = 3.1 meters:

d_DEMO.a     = 2.9; % plasma minor radius (m)
d_DEMO.B_max = 13; % maximum magnetic field at the coils (T)
d_DEMO.P_E   = 500; % electric power output of the reactor (MW)
d_DEMO.P_W   = 1.04; % neutron wall loading (MW/m^2)
d_DEMO.H     = 0.98; % H-mode enhancement factor
d_DEMO.consts.eta_T = 0.25; % thermal conversion efficiency
d_DEMO.consts.T_bar = 12.5; % average ion temperature (keV)
d_DEMO.consts.k     = 1.65; % plasma elongation
d_DEMO.consts.f_RP  = 0.25; % recirculating power fraction
d_DEMO = FusionReactorDesign(d_DEMO,'a',2.7,3.1,100); % run function
d_DEMO.parameters % show table of resulting parameters

The outputs for the DEMO case also show overall agreement with DEMO parameters [3]. The plasma major radius R_0 output is 7.8 m, which is not far from the 9 m design radius for DEMO. The resulting on-axis magnetic field output is 6.2 T, close to the 5.9 T of the DEMO design. The plasma current output is now 21 MegaAmps, which is less than 20% away from the design value of 18 MegaAmps. It is important to note that in each of these parameters, we see an increase going from ITER to DEMO, which is consistent both in our model’s output and the actual design parameters in the papers [1-3].

The operational constraints plot for DEMO is shown in the figure below. DEMO is a larger reactor than ITER, and given the favorable scaling of tokamak operation with size, we expect improved results for operational constraints in DEMO. The three curves which check plasma stability are all satisfied. Unlike in the case of ITER which had the green curve close to the shaded region, the green curve in the case of DEMO stays safely in the unshaded region. The blue curve is still in the unshaded region, but much closer to the boundary of the unshaded region than ITER (now ~1.8, much closer to 1 than in the case of ITER which was ~4). This shows an improvement for DEMO compared to ITER as it is closer to producing enough self-sustaining plasma current, though it will still need some help from other current-generating techniques which will be tested on ITER.

This function is part of release 2022.1 of the Fusion Energy Toolbox. Contact us at info@psatellite.com or call us at +01 609 275-9606 for more information.

[1] Aymar, Barabaschi, and Y Shimomura (for the ITER Team), “The ITER Design”, Plasma Physics and Controlled Fusion 44, 519–565 (2002); https://doi.org/10.1088/0741-3335/44/5/304
[2] Sips et al., “Advanced scenarios for ITER operation”, Plasma Physics and Controlled Fusion 47 A19 (2005); https://doi.org/10.1088/0741-3335/47/5A/003
[3] Kembleton et al., ” EU-DEMO design space exploration and design drivers”, Fusion Engineering and Design 178, 113080 (2022); https://doi.org/10.1016/j.fusengdes.2022.113080