APS Division of Plasma Physics 2022 Meeting in Spokane, Washington

Last week, I attended the American Physical Society Division of Plasma Physics (APS DPP) 2022 Meeting. As the name entails, it was a meeting full of plasma physics with applications ranging from astrophysics to nuclear fusion energy. There were many great talks and posters on plasma physics research by companies, national labs, and universities, and one could sense an overall feeling of excitement around fusion shared by many attendees.

I had a pleasant time in Spokane, WA. Pictures from outside of the conference center (with many conference attendees standing nearby), including the nice view from the conference center, are shown below.

I presented a talk on the Princeton Field-Reversed Configuration (PFRC) fusion reactor concept, and how we can leverage public-private partnerships for its development. The talk discussed technical details of the PFRC, including the past modeling and experiments, current investigation, and future research & development plans. The talk also described the markets and commercialization opportunities for this reactor concept, including disaster relief and asteroid deflection. Here I am at the podium speaking.

I also presented a poster on our recent investigations of x-ray diagnostics on the PFRC-2 experiment for electron temperature and density measurements, which was mounted on a poster board in the conference center. Many people came by to ask about my poster as well as about general PFRC questions, which kept me talking for the majority of the 3-hour poster block session! It was great to discuss ideas and results with many scientists and students at the conference.

Dr. Sangeeta Vinoth also had a poster at this conference on collisional-radiative model developments to extract electron temperature measurements from spectroscopy, which she presented virtually. APS DPP 2022 was an exciting conference to attend, and I’m looking forward to seeing updates from presenters at this conference. That also includes us, as we have more research and investigation to do — stay tuned!

New Paper Published: Implementation of Mylar filter in x-ray diagnostics of PFRC-2

We have recently published a research paper titled: “Use of a Mylar filter to eliminate vacuum ultraviolet pulse pileup in low-energy x-ray measurements”[1]. This paper is published as part of the “Proceedings of the 24th Topical Conference on High-Temperature Plasma Diagnostics”, along with the papers mentioned in earlier PSS blog posts on the collisional-radiative model and the neutral atom density diagnostic.

This research builds on the investigation of measuring electron density and temperature by collecting plasma-emitted x rays using a diagnostic called the Silicon Drift Detector (SDD). The x rays emitted via Bremsstrahlung (German word for “breaking radiation”), can be mapped to a distribution that gives electron temperature and density. We observed changes to the x-ray spectra when changing the size of the aperture during experiments with the Rotating Magnetic Field (RMF), which was found to be connected to a phenomenon called “pulse pileup”. Essentially, pulse pileup means that too many x rays coming in at once can combine in energy and so skew the distribution that is measured — this would be misleading for temperature measurements, since they are connected to the slope of the distribution! To solve this issue, we decided to investigate the use of a Mylar filter, see below, because of its favorable filtering properties relevant to our experiment:

Picture of Mylar filter, diameter ~ 1 centimeter, thickness ~ 1 micron (1/10000 cm). Image from [1].

We performed calibration with an x-ray target tube and tested the filter with various plasma conditions for the PFRC-2. When running in a high-ultraviolet-flux mode of the PFRC-2 (with RMF) we found that the Mylar filter substantially reduced the low energy signal, which supports our hypothesis that the pulse pileup was causing x rays to be measured at higher energies. See the figure below for a striking comparison between no-Mylar and Mylar cases. The Mylar filter helps us eliminate pulse pileup effects and uncover the true x-ray distribution reaching the SDD for accurately measuring electron number density and temperature in the PFRC.

Comparison of x-ray spectra for high-UV-flux condition: without Mylar (blue) and with Mylar (red). A substantial reduction of the pulse pileup helps us uncover the true x-ray spectrum for measurement. Image from [1].
[1] Galea, Swanson, Cohen, and Thomas, Review of Scientific Instruments 93, 093531 (2022);
 https://doi.org/10.1063/5.0101712

Annie Price Presents, “Nuclear Fusion Powered Titan Aircraft” at IAC 2022 in Paris France

Annie Price, who was an intern at Princeton Satellite Systems during the summer of 2021, presented our paper, “Nuclear Fusion Powered Titan Aircraft,” at session C4,10-3.5 which was the Joint Session on Advanced and Nuclear Power and Propulsion Systems.

There were many interesting papers. One was on generating electric power in the magnetic nozzle of a pulsed fusion engine. Another was on the reliability of nuclear thermal engines. The lead-off paper was on a centrifugal nuclear thermal engine with liquid fission fuel.

Annie’s paper covered the design of a Titan aircraft that can both do hypersonic entry and operate at subsonic speeds. Her design uses a 1 MWe nuclear fusion power plant based on PFRC and six electric propeller engines.

She discussed the aerodynamic design, why Titan is so interesting and how the available power would enable new scientific studies of Titan. Annie also described how a PFRC rocket engine or power plant operates. She included a slide on our latest results.

The paper was well received. She had a couple of good questions after her talk and engaged in interesting discussions after the session. Great job Annie!

Installation of the new capacitors in the Princeton Field-Reversed Configuration-2

Further upgrades of the Princeton Field Reversed Configuration-2 (PFRC-2) are underway with the goal of achieving the milestone of ion heating. The PFRC-2 is predicted to have substantial ion heating once the RF antenna frequency is lowered and the magnetic field is increased. To lower the RF frequency, we have installed additional capacitors in the tank circuit of PFRC-2. The picture below shows three capacitors, each with capacitance of 2 nanoFarads (2 nF), installed in a custom-built copper box.

The copper box is also shown in the bottom part of the image below, where it will be connected with a robust cable to the top box, which is called the tuning box. The tuning box is an aluminum box with one fixed capacitor and two tunable capacitors which can be adjusted to change the resonance frequency of the circuit.

Changes have also been made to the inside of the tuning box in order to prevent electrical arcing, which is a common issue when working with high-power and high-voltage circuits. To help prevent arcing, conical structures of brass have been fabricated and installed. The brass structure is shown alone in the first image below and is shown enveloping the cable connection in the second image below. The shape of these structures allows a better spread of the charge in the tuning box so as to lower the chances of electrical breakdown. Taking these preventative design decisions is key to ensuring reliable operation once the upgraded system is running.

PFRC Fusion Article in the Proceedings of the National Academy of Sciences

This is a really excellent article on nuclear fusion, “Small-scale fusion tackles energy, space applications,” by M. Mitchell Waldrop, written January 28, 2020, Vol 117, No. 4 for the Proceedings of the National Academy of Sciences of the United States of America (PNAS). The article quotes team Dr. Cohen and Mr. Paluszek and provides an excellent and technically accurate discussion of FRCs, heating methods, and fusion fuel physics.

PNAS has many interesting articles!

Plasma oscillations seen in seed and RMF plasma using Phantom Camera

The plasma rotation of the PFRC is being analyzed by the Phantom Camera in the Princeton Plasma Physics laboratory.

Video recording of RMF plasma

The above media was taken when we were running with the Rotating Magnetic Field (RMF) Heating System. The video from 10 to 23 seconds shows the plasma rotations are more pronounced and then stabilized later on. The stabilization of plasma is due to the gas puff introduced.

While the PFRC is under upgrade to lower the RF frequency, we have been running the seed plasma, which is PFRC plasma operation without RMF. We also observe rotation in the PFRC seed plasma.

Video recording of seed plasma

This video is taken using Phantom Camera with 1000 frames per second.

Seed plasma seen using Phantom Camera at 20k frames per second.

Upgrade underway of Princeton Field Reversed Configuration-2

Image

The Princeton Field Reversed Configuration-2 (PFRC-2) upgrade in field and frequency is underway. We are currently installing new coils around the experiment to increase the magnetic fields and new capacitors to help lower the RF operating frequency – all to reach our target milestones of measuring ion heating! This is an essential next step in our development of Direct Fusion Drive.

The power supplies are stacked in their rack, ready to supply power to the belt coils. The supplies must be programmed to energize for each pulse as they are not cooled and the coils would otherwise overheat. The belt coil holder component on the right was 3D printed at PPPL.

The new 2 nF capacitors, shown above (left image), must be enclosed in a custom copper box that will be part of the tank circuit of PFRC-2. Each component must be carefully designed, including the lengths of the connecting cables, for us to get the right frequency without exceeding voltage limits of the materials.

The above image is of the cable that will connect the tank circuit and the PFRC-2. These cables are very robust, and stiff so that the layout must be carefully planned. We will continue to post updates as we work towards that 2 MHz frequency milestone!

PFRC-2 has been funded by ARPA-E OPEN 2018, NASA NIAC and DOE Fusion Energy Sciences grants.

DOE Awards Princeton Fusion Systems Three INFUSE 2022a Grants

The Department of Energy announced the First Round of the FY 2022 Public-Private Partnership Awards to Advance Fusion Energy. The awards list contains 18 awardees. Princeton Fusion Systems, a doing-business-as name for Princeton Satellite Systems, received three awards:

Electron density profiles on PFRC with USPR: Ultrashort Pulse Reflectometry (USPR) is a plasma diagnostic technique that would be used on the Princeton Field-Reversed Configuration (PFRC) to measure electron density profiles. Such profile measurements provide insight into the structure of PFRC plasma and can improve our estimates of confinement time. Our University partner is University of California, Davis, PI Dr. Neville Luhmann.

Evaluating RF antenna designs for PFRC plasma heating and sustainment: We intend to analyze RF antenna performance parameters critical to the validity of robust PFRC-type fusion reactor designs. Team member University of Rochester will support TriForce simulations and contractor Plasma Theory and Computation, Inc. will support RMF code simulations. Our national lab partner is Princeton Plasma Physics Laboratory, PI Dr. Sam Cohen.

Stabilizing PFRC plasmas against macroscopic low‐frequency instabilities: This award will use the TriForce code to simulate several plasma stabilization techniques for the PFRC-2 experiment. Our lab partner is PPPL and the team again includes the University of Rochester.

These awards will help us advance PFRC technology. Contact us for more information!

TriForce model of the PFRC-1 experiment