Technology-to-Market Summer Internship

My name is Riya Anand. I am a rising sophomore at the University of Pennsylvania studying Chemistry and pursuing minors in Environmental and Sustainability Management and Engineering Entrepreneurship at the Wharton School. This summer I worked at Princeton Satellite Systems (also doing business as Princeton Fusion Systems) as a Business and Product Development intern. 

I predominantly worked on two projects during my time at PFS: GAMOW & PFRC-3. 

GAMOW: ARPA-E GAMOW brings together Princeton Fusion Systems, Princeton University, the National Renewable Energy Laboratory (NREL), and Qorvo (formerly UnitedSiC) to develop high efficiency switching amplifiers using cascode wide bandgap (WBG) devices, employing advanced cooling technology in the form of digitally controlled boards. The Technology-to-Market (T2M) plan allows for the development of a strong understanding of a product and its surrounding market, customers, and acquisition strategies. Over the past few months, I worked on the third revision of the GAMOW T2M plan. Specifically, I worked to insert various elements to improve the strength and effectiveness of the plan to the reader. 

In order to do this, I conducted market analysis (using a TAM/SAM/SOM framework for GAMOW’s primary, secondary, & tertiary markets) and cost analysis (using both a “bottom-up” and cost-benefit framework). In conducting the analyses, I was able to meet with leaders at PFS’s collaborating companies including the Head of Marketing at Qorvo, a company that specializes in creating cascodes, to collect metrics and strategies. 

I followed up my market research with competitive analysis where I analyzed areas such as technology of focus, products, financial resources/market share, marketing strategies, future plans and growth, etc. for various competitive startups and companies. This allowed me to pinpoint areas PFS’s strengths and use it to compose a value proposition.

Figure showing the growing power electronics market for GaN, a WBG semiconductor. Source: Semiconductor Today.

Additionally, I worked to organize all of the end-user organizations that PFS has come in contact with at previous summits, conferences, etc. to ensure room for effective communication and to serve as a reminder for the needs of clientele as the GAMOW technology develops.

Finally, after meeting with some potential investors for the GAMOW technology, I put down a framework for the EBITDA margin (earnings before interest, taxes, and amortization, a measure of company profitability), valuation at exit, & return on investment that would allow for derivation of numbers that could be presented to investors, collaborators, clients, etc. and helped in creating a GAMOW Product Roadmap document and pitch deck that simplified descriptions of each of GAMOW’s products, down to images and definitions of each component, both essential for strong understanding of the technology. 

Apart from adding this information to the T2M plan, itself, I created a business/marketing slide with T2M information (including goals, target market, assessment of competitiveness, assessment of market, and a value proposition) that was used as PSS’s lead slide at the ARPA-E 2023 Energy Summit. I compiled all of the above information and other highlights within the plan into an Executive Summary of the technology that now leads the T2M report. 

PFRC: The Princeton Field Reversed Configuration (PFRC) device is a nuclear fusion reactor which provides a revolutionary approach to fusion power generation. The reactor is small and clean and can be used in diverse applications, from submarines to urban environments to space propulsion. A model of the PFRC is shown below. Under this project, I attended the 5th Annual Department of Defense Power and Energy Conference outside Washington D.C. where I heard from renowned figures such as Major General David Maxwell and was able to speak to and learn from figures such as Honorable Sharon Burke and numerous representatives from Guernsey, Ammentum, and NextEra Energy about PFRC technology and applications. 

Prior to the conference, I had been attending weekly Plasma Physics lectures under Professor Samuel Cohen at the Princeton Plasma Physics Laboratory (a national Department of Energy laboratory) and using the information I learned here to create T2M and general marketing slides, later accessible by all we spoke to at the conference. The slides included an extensive value proposition (in terms of military, space propulsion, civil terrestrial), market standing, manufacturing lead, product roadmap, end-user understanding, competitive advantage and analysis of the general industry). All of the contacts and information accumulated in this conference were compiled into a multipage summarizing document. 

Via my conversations at the Summit, I was able to set up meetings with potential collaborators/clients and PFS. One of these meetings in particular experienced success and led to further discussion and strong possibility of collaboration once technological details are finalized. 

Overview: As a whole, PFS provided me with a space where I was able to diversify my past experiences through exposure across various industries. The integration of hands-on-experience, being able to join conversations with clients, investors, and collaborators as an intern, into academic offerings made PFS an ideal environment for me to develop skills such as problem solving, effective communication, thought leadership, and collaboration, which will give me the agility and ability to understand and move between industries. I have gained experience in fields ranging from plasma physics and aerospace engineering to entrepreneurship and operations, giving me exposure to the crossroads between STEM and business. The tight knit network within the company provided me a place where I could grow, learn, and eventually, contribute to the business development efforts of the company. I would not have been able to do this without the help of each and every person at PFS who was extremely welcoming and willing to provide 1:1 mentorship and guidance each step of the way. I am extremely appreciative of PFS for giving me the opportunity to work with them this summer. I am confident that I will apply all that I have learned here to all of my future endeavors. 

ARPA-E Energy Innovation Summit 2023

At the end of March, we attended the ARPA-E Energy Innovation Summit in National Harbor, MD. At the Summit we presented our work on power electronics tailored for fusion systems under an ARPA-E GAMOW grant. It was a great experience to network with many other awardees of ARPA-E grants working on innovative energy projects and learn about the power electronics needs of potential customers so we could design our boards to these specifications. Shown below is our Summit booth which was run by PSS Mike Paluszek and me.

Our booth contains prototype circuit boards developed by PSS and our collaborators at Princeton University (the Princeton Power Electronics Research Lab), along with flyers and other learning materials. The posters mounted behind us describe the work done by us and our collaborators: the Princeton Power Electronics Research Lab, UnitedSiC (now Qorvo), and the National Renewable Energy Laboratory (NREL).

Breakout sessions included panels on: future plans for inertial fusion energy, nuclear & materials, rethinking the nuclear waste challenge, and scaling up innovations for impact in the private sector with the ARPA-E SCALEUP program. Dr. Neil deGrasse Tyson gave a talk at the Summit!

The pdfs of the trifold and posters at our Summit booth are shown below. If you have any power electronics requirements for your systems, please contact us at!

Winter Power Electronics Internship

At MIT, we are given the month of January off from classes to pursue our own interests, whether they be career-oriented or hobby-based. During these five weeks, I have worked at PSS as a power electronics intern. My time at PSS has given me the opportunity to explore so many of the industry based applications of electronics and electrical engineering amongst some of the most innovative minds in the aerospace and energy industries. 

Within the GAMOW (Galvanizing Advances in Market-Aligned Fusion for an Overabundance of Watts) project, my work centered around helping redesign, assemble, and test a power load switch, the resulting prototype of which is shown above. Within this project, I received a wide array of experience ranging from 3D-modeling PCB boards with Eagle software, to physical board assembly, to designing testing procedures for the completed board. Initially, I worked on redesigning the load switch PCB to reduce loop currents and noise. My next steps were to source and order all needed components for in-house assembly. During the assembly process, I worked with both a soldering iron and hot air rework station to assemble surface mounted devices (SMDs) and through-hole components. 

Raspberry Pi setup for PWM

I also dipped into some software based components of the project, programming in C and Python to create hardware based signals to our desired testing specifications. Specifically, I was aiming to make Pulse Width Modulation (PWM) signals of a specific duration for the Raspberry Pi to output. This led to various tests on the outputs of the code, through the use of an oscilloscope (two PWM pulses on the oscilloscope are shown below). Ultimately, I had the chance to start testing the board in connection with a power supply and the Raspberry Pi’s program.

Moreover, I had the opportunity to dip into so many different branches of electrical engineering and project design. In attending meetings about all of the individual components of the massive GAMOW project, I saw how the team plans and executes each individual collaborative part of the project. This experience in the project process and cutting edge electrical project design as a whole have given me many insights into the professional world of electrical engineering.