Direct Fusion Drive Mars Mission – Deep Space Habitat

Check out our new banner! We modified our spacecraft to use NASA’s Deep Space Habitat:

 

 

 

 

 

 

Image Source: NASASpaceFlight

The habitat has a 500 day configuration, with more than enough room for all of the astronauts and their supplies!

http://www.nasaspaceflight.com/2012/03/dsh-module-concepts-outlined-beo-exploration/
http://www.nasaspaceflight.com/2012/04/delving-deeper-dsh-configurations-support-craft/

We will use the Orion spacecraft for transfer from Earth’s surface to Earth orbit, where it will dock with the DFD powered spacecraft.  That is what the banner image is portraying! Once the astronauts are aboard the DFD powered spacecraft, they will travel to Mars and back in roughly 10 months, including a 1 month stay at Mars.  After they have returned to Earth orbit, the spacecraft will dock with the Orion capsule. The crew can then safely return to Earth’s surface aboard the Orion!

Princeton Plasma Physics Laboratory Inventor’s Dinner

Gary and I attended the Princeton Plasma Physics Laboratory (PPPL) Inventors dinner at Prospect House on the Princeton University campus. Awards were given for 19 patents, patent applications and invention disclosures by PPPL engineers and scientists along with their co-inventors from other institutions.

Gary and I are on a patent application with Sam Cohen of PPPL and Yosef Razin of PSS titled, “Method to Produce High Specific Impulse and Moderate Thrust from a Fusion-powered Rocket Engine: (ARE-Aneutronic Rocket Engine). This is the core technology for our Direct Fusion Drive (DFD). PSS has licensed this and one other fusion patents from Princeton University for DFD work.

I gave a short speech talking about how DFD may take astronauts to Mars in the not too distant future for both orbital and landing missions. We handed out Mars candy bars and DFD bookmarks to the guests.

The dinner was excellent and it was fun talking with our colleagues at PPPL! We look forward to next years dinner!

Is that a spaceship in your pocket?

I remember the day my dad brought home our very first VCR. It was a glorious invention. No longer were our family outings constrained by the TV Guide. This nifty VCR would magically record our favorite shows and allow us to play them back whenever we wanted. It wasn’t long before we had a cabinet full of unlabeled tapes — most of which were never watched again, except while searching for something we accidentally recorded over. But still, it was cool.

That first day, my dad and I watched “The Empire Strikes Back”. Twice! Being just five years old, this was my first “real” movie. I remember in the opening scenes, the huge imperial star destroyer floating ominously across the screen. It seemed to go on forever. Okay, so this is a spacecraft.

Fast forward 32 years. Everything seems to have gotten… smaller.

We can now manage our DVR, record our own digital movies, tweet, text and call from that little smartphone in our pocket. And those huge spaceships from 1980’s fiction? They are now about the size of that first VCR.

We’ve recently designed a 6U CubeSat capable of escaping Earth orbit, rendezvousing with an asteroid, and returning to Earth. Its called “Asteroid Prospector”. It’s shape is 12 x 24 x 36 cm, which is about 5 x 10 x 15 inches, and it weighs about 40 lbs. In other words: its a 1981 VCR. But it goes a lot faster.

Earth departure spiral for the Asteroid Prospector

Earth departure spiral for the Asteroid Prospector

The Asteroid Prospector is propelled through space using a Busek Bit-3 ion thruster. It uses electric power to accelerate ions out the nozzle at high speed, pushing the spacecraft in the opposite direction of the ion stream. This gives us a small thrust of 1.9 mN, but it can operate for nearly 3 years on just 5 kg of propellant! We are presenting the spacecraft design, mission analysis and example asteroid rendezvous simulations at the upcoming SmallSat conference.

Fast forward another 32 years. Is that a spaceship in your pocket?