Our Visit to ITER in the South of France

On September 22 Marilyn, Eric, and I visited ITER, the International Tokamak Experimental Reactor in Saint-Paul-lez-Durance, France, about 45 minutes from Aix-en-Provence. We took the TGV from Paris to Aix-en-Provence.

Our tour started with a talk by Akko Maas who gave a great presentation on fusion. He talked about building ITER. The complexity of the project and the large international team both present challenges. He also discussed the advantages of fusion in comparison to wind and solar. He noted that while a fusion reactor would have some waste, both wind and solar, when decommissioned, have waste. He talked about the next phase after ITER called DEMO. ITER is designed to produce 500 MW of fusion power from an input of 50 MW heating power. Akko had a slide listing some of the commercial fusion efforts.

Katya Rauhansalo was our tour guide. She had a couple of assistants. They were all really helpful and very knowledgeable. We discussed many fine points of Tokamak design and fusion in general. Marilyn, Eric, and I were combined with a larger group, due to Covid absences. We chatted with members of the other group about PFRC.

A Tokamak is shown below. The green coils are the center stack coils used to induce a current in the plasma. The gray coils are the poloidal coils. The purple coils are the toroidal coils. In ITER, all coils are superconducting. The green donut in the middle of the D coils is the plasma.

The following image shows the Tokamak building.

The first stop was the manufacturing facility for the poloidal coils. The following video shows a crane in operation in the assembly hall.

The top and bottom coils are small enough that they can be shipped complete. The others need to be manufactured. The following figure shows the cryostat for testing the poloidal coils.

This poster gives the details of the testing.

We then moved through the entrance to the Tokamak. We were able to enter the Tokamak building itself. Here is Eric in front of an installed toroidal superconducting coil.

The coil is shaped like a D which works better than a circular coil.

First plasma was scheduled for 2025 but may be delayed. This was partly due to Covid and partly due to the inevitable technical glitches in such a complex project.

This entry was posted in Energy, General and tagged , by Michael Paluszek. Bookmark the permalink.

About Michael Paluszek

Michael Paluszek is President of Princeton Satellite Systems. He graduated from MIT with a degree in electrical engineering in 1976 and followed that with an Engineer's degree in Aeronautics and Astronautics from MIT in 1979. He worked at MIT for a year as a research engineer then worked at Draper Laboratory for 6 years on GN&C for human space missions. He worked at GE Astro Space from 1986 to 1992 on a variety of satellite projects including GPS IIR, Inmarsat 3 and Mars Observer. In 1992 he founded Princeton Satellite Systems.

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.